On quadratic differentials on multiply connected domains that are perfect squares
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 113-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper considers the problem on extremal decomposition of a multiply connected domain $G\subset\mathbb C$ in the case where the associated quadratic differential is a perfect square. It is shown that in the case considered, the value of the functional for this extremal decomposition is the least one in a certain class of decompositions. Bibliography: 10 titles.
@article{ZNSL_2006_337_a7,
     author = {E. G. Emel'yanov},
     title = {On quadratic differentials on multiply connected domains that are perfect squares},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {113--133},
     year = {2006},
     volume = {337},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a7/}
}
TY  - JOUR
AU  - E. G. Emel'yanov
TI  - On quadratic differentials on multiply connected domains that are perfect squares
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 113
EP  - 133
VL  - 337
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a7/
LA  - ru
ID  - ZNSL_2006_337_a7
ER  - 
%0 Journal Article
%A E. G. Emel'yanov
%T On quadratic differentials on multiply connected domains that are perfect squares
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 113-133
%V 337
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a7/
%G ru
%F ZNSL_2006_337_a7
E. G. Emel'yanov. On quadratic differentials on multiply connected domains that are perfect squares. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 113-133. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a7/

[1] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-oe izd., 1966 | MR

[2] S. L. Krushkal, R. Kyunau, Kvazikonformnye otobrazheniya – novye metody i prilozheniya, Nauka, Novosibirsk, 1984 | MR | Zbl

[3] M. Shiffer, “Nekotorye novye rezultaty v teorii konformnykh otobrazhenii”, Printsip Dirikhle, konformnye otobrazheniya i minimalnye poverkhnosti, Prilozhenie k kn.: R. Kurant, M., 1953

[4] J. A. Jenkins, “On the existence of certain general extremal metrics, I, II”, Ann. Math., 66:3 (1957), 440–453 ; Tohoku Math. J. (2), 45:2 (1993), 405–412 | DOI | MR | Zbl | DOI | MR

[5] J. A. Jenkins, “On mixed problems of extremal decompositions”, Indiana Math. J., 49:3 (2000), 391–396 | DOI | MR

[6] G. V. Kuzmina, “Moduli semeistv krivykh i kvadratichnye differentsialy”, Trudy MIAN, 139, 1980, 3–241 | MR

[7] K. Strebel, Quadratic differentials, Springer-Verlag, 1984 | MR

[8] A. Yu. Solynin, “Moduli i ekstremalno-metricheskie problemy”, Algebra i analiz, 11:1 (1999), 3–86 | MR | Zbl

[9] E. G. Emelyanov, G. V. Kuzmina, “Teoremy ob ekstremalnom razbienii v semeistvakh sistem oblastei razlichnykh tipov”, Zap. nauchn. semin. POMI, 237, 1997, 74–104 | MR

[10] V. O. Kuznetsov, “O svoistvakh konformnogo radiusa oblasti”, Zap. nauchn. semin. POMI, 276, 2001, 237–252 | MR | Zbl