Capacities of condensers, generalizations of Grötzsch Lemmas, and symmetrization
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 73-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Principles of symmetry and composition for the conformal capacity of generalized condensers are considered. Interrelations among these principles, the classical Grötzsch lemmas, and certain types of symmetrization are discussed. Applications to estimating the logarithmic and hyperbolic capacities of compacts and to extremal decomposition problems are presented. Bibliography: 27 titles.
@article{ZNSL_2006_337_a5,
     author = {V. N. Dubinin},
     title = {Capacities of condensers, generalizations of {Gr\"otzsch} {Lemmas,} and symmetrization},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {73--100},
     year = {2006},
     volume = {337},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a5/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Capacities of condensers, generalizations of Grötzsch Lemmas, and symmetrization
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 73
EP  - 100
VL  - 337
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a5/
LA  - ru
ID  - ZNSL_2006_337_a5
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Capacities of condensers, generalizations of Grötzsch Lemmas, and symmetrization
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 73-100
%V 337
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a5/
%G ru
%F ZNSL_2006_337_a5
V. N. Dubinin. Capacities of condensers, generalizations of Grötzsch Lemmas, and symmetrization. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 73-100. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a5/

[1] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., M., 1966 | MR

[2] V. N. Dubinin, “Obobschennye kondensatory i asimptotika ikh emkostei pri vyrozhdenii nekotorykh plastin”, Zap. nauchn. semin. POMI, 302, 2003, 38–51 | MR

[3] V. N. Dubinin, N. V. Eirikh, “Nekotorye primeneniya obobschennykh kondensatorov v teorii analiticheskikh funktsii”, Zap. nauchn. semin. POMI, 314, 2004, 52–75 | MR | Zbl

[4] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, M., 1962

[5] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, M., 1962 | MR

[6] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi mat. nauk, 49:1 (1994), 3–76 | MR | Zbl

[7] V. N. Dubinin, Emkosti kondensatorov v geometricheskoi teorii funktsii, Izd-vo Dalnevost. un-ta, Vladivostok, 2003

[8] L. Alfors, Lektsii po kvazikonformnym otobrazheniyam, M., 1969 | MR

[9] M. Ohtsuka, Dirichlet problem, extremal length, and prime ends, Van Nostrand, New York, 1970 | Zbl

[10] S. Kirsch, “Transfinite diameter, Chebyshev constant and capacity”, Handbook of complex analysis: Geometric function theory, 2, Elsevier, Amsterdam, 2005, 243–308 | MR | Zbl

[11] T. Kubo, “Some theorems on analytic functions in an annulus”, Jap. J. Math., 29 (1959), 43–47 | MR | Zbl

[12] M. Klein, “Estimates for the transfinite diameter with applications to conformal mapping”, Pacific. J. Math., 22:2 (1967), 267–279 | MR | Zbl

[13] P. Duren, “Robin capacity”, Computational methods and function theory 1997 (Nicosia), Ser. Approx. Decompos., 11, World Sci. Publishing, River Edge, NJ, 1999, 177–190 | MR | Zbl

[14] P. Duren, J. Pfaltzgraff, “Hyperbolic capacity and its distortion under conformal mapping”, J. Anal. Math., 78 (1999), 205–218 | DOI | MR | Zbl

[15] K. Haliste, “On an extremal configuration for capacity”, Arkiv for Mat., 27 (1989), 97–104 | DOI | MR | Zbl

[16] D. Karp, “Capacity of the condenser whose plates are circular arcs”, Complex Variables, 50:2 (2005), 103–122 | DOI | MR | Zbl

[17] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii, II”, Algebra i analiz, 9:5 (1997), 1–50 | MR

[18] G. V. Kuzmina, “Zadachi ob ekstremalnom razbienii rimanovoi sfery, I, II, III”, Zap. nauchn. semin. POMI, 276, 2001, 253–275 ; 286, 2002, 126–147 ; 314, 2004, 124–141 | MR

[19] G. V. Kuzmina, “Metod ekstremalnoi metriki v zadachakh o maksimume proizvedeniya stepenei konformnykh radiusov nenalegayuschikh oblastei pri nalichii svobodnykh parametrov”, Zap. nauchn. semin. POMI, 302, 2003, 52–67 | MR

[20] A. K. Bakhtin, A. L. Targonskii, “Ekstremalnye zadachi o nenalegayuschikh oblastyakh so svobodnymi polyusami na luchakh”, Dopov. NAN Ukra{\lat i}ni, 7 (2004), 7–13 | MR

[21] A. K. Bakhtin, “Kusochno-razdelyayuschee preobrazovanie i ekstremalnye zadachi so svobodnymi polyusami na luchakh”, Dopov. NAN Ukra{\lat i}ni, 12 (2004), 7–13 | MR | Zbl

[22] A. K. Bakhtin, “Otsenki nekotorykh funktsionalov dlya otkrytykh mnozhestv”, Nel{\lat i}n{\lat i}in{\lat i} kolivannya, 8:2 (2005), 147–153 | MR | Zbl

[23] A. K. Bakhtin, “Ekstremalnye zadachi so svobodnymi polyusami na okruzhnosti”, Dopov. NAN Ukra{\lat i}ni, 5 (2005), 7–10

[24] V. N. Dubinin, “Simmetrizatsiya, funktsiya Grina i konformnye otobrazheniya”, Zap. nauchn. semin. POMI, 226, 1996, 80–92 | MR

[25] M. Shiffer, “Nekotorye novye rezultaty v teorii konformnykh otobrazhenii”, Prilozhenie k kn.: R. Kurant, Printsip Dirikhle, konformnye otobrazheniya i minimalnye poverkhnosti, M., 1953, 234–301

[26] Yu. E. Alenitsyn, “Ob odnolistnykh funktsiyakh bez obschikh znachenii v mnogosvyaznoi oblasti”, Tr. Mat. in-ta AN SSSR, 94, 1968, 4–18 | Zbl

[27] V. N. Dubinin, “Asimptotika modulya vyrozhdayuschegosya kondensatora i nekotorye ee primeneniya”, Zap. nauchn. semin. POMI, 237, 1997, 56–73 | MR | Zbl