On approximating periodic functions by singular integrals with positive kernels
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 51-72
Voir la notice de l'article provenant de la source Math-Net.Ru
In the two-dimensional case, new approximation characteristics for functions belonging to saturation classes of continuity modules for the spaces $L-p$ of periodic functions are obtained. The problem of approximating a function by an analog of Fejér's integral in the space of periodic functions square integrable on the period is considered.
Bibliography: 5 titles.
@article{ZNSL_2006_337_a4,
author = {N. Yu. Dodonov and V. V. Zhuk},
title = {On approximating periodic functions by singular integrals with positive kernels},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {51--72},
publisher = {mathdoc},
volume = {337},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a4/}
}
TY - JOUR AU - N. Yu. Dodonov AU - V. V. Zhuk TI - On approximating periodic functions by singular integrals with positive kernels JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 51 EP - 72 VL - 337 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a4/ LA - ru ID - ZNSL_2006_337_a4 ER -
N. Yu. Dodonov; V. V. Zhuk. On approximating periodic functions by singular integrals with positive kernels. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 51-72. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a4/