On approximating periodic functions by singular integrals with positive kernels
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 51-72
Cet article a éte moissonné depuis la source Math-Net.Ru
In the two-dimensional case, new approximation characteristics for functions belonging to saturation classes of continuity modules for the spaces $L-p$ of periodic functions are obtained. The problem of approximating a function by an analog of Fejér's integral in the space of periodic functions square integrable on the period is considered. Bibliography: 5 titles.
@article{ZNSL_2006_337_a4,
author = {N. Yu. Dodonov and V. V. Zhuk},
title = {On approximating periodic functions by singular integrals with positive kernels},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {51--72},
year = {2006},
volume = {337},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a4/}
}
N. Yu. Dodonov; V. V. Zhuk. On approximating periodic functions by singular integrals with positive kernels. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 51-72. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a4/
[1] A. S. Zhuk, V. V. Zhuk, “O priblizhenii periodicheskikh funktsii lineinymi metodami approksimatsii”, Zap. nauchn. semin. POMI, 337, 134–164 | Zbl
[2] V. V. Zhuk, Approksimatsiya periodicheskikh funktsii, L., 1982 | MR
[3] V. V. Zhuk, Silnaya approksimatsiya periodicheskikh funktsii, L., 1989 | MR
[4] G. Beitmen, A. Erdeii, Tablitsy integralnykh preobrazovanii, T. 1, M., 1969
[5] A. Zigmund, Trigonometricheskie ryady, T. 1, M., 1965