On canonical mappings onto circular domains with radial slits
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 35-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

New definitions of normal (in the sense of GrЁotzsch) annular and circular domains with radial slits are considered. Their geometric and functional properties are established. Arguments based on the method of extremal metric in the sense of Fuglede allow one to extend these properties to the $n$-dimensional case, $n\geqslant2$. The properties established provide a means for simplifying the proofs of the related results by Strebel and Reich and for bringing them to a complete form. Bibliography: 12 titles.
@article{ZNSL_2006_337_a3,
     author = {V. A. Shlyk and A. S. Gulyaev},
     title = {On canonical mappings onto circular domains with radial slits},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {35--50},
     year = {2006},
     volume = {337},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a3/}
}
TY  - JOUR
AU  - V. A. Shlyk
AU  - A. S. Gulyaev
TI  - On canonical mappings onto circular domains with radial slits
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 35
EP  - 50
VL  - 337
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a3/
LA  - ru
ID  - ZNSL_2006_337_a3
ER  - 
%0 Journal Article
%A V. A. Shlyk
%A A. S. Gulyaev
%T On canonical mappings onto circular domains with radial slits
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 35-50
%V 337
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a3/
%G ru
%F ZNSL_2006_337_a3
V. A. Shlyk; A. S. Gulyaev. On canonical mappings onto circular domains with radial slits. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 35-50. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a3/

[1] E. Reich, S. E. Warschawski, “On canonicl conformal maps of region of arbitrary connectivity”, Pacif. J. Math., 10:3 (1960), 965–989 | MR

[2] K. Strebel, “Die extremale Distanz zweier Enden einer Riemannschen Fläche”, Ann. Acad. Sci. Fenn. Ser. A, I, 179 (1955), 1–22 | MR

[3] E. Reich, “On radial slit mappings”, Ann. Acad. Sci. Fenn. Ser A, I, 296 (1961), 1–12. | MR

[4] I. N. Demshin, Yu. V. Dymchenko, V. A. Shlyk, “Kriterii nul-mnozhestv dlya vesovykh sobolevskikh prostranstv”, Zap. nauch. semin. POMI, 276, 2001, 52–82 | MR | Zbl

[5] B. Fuglede, “Extremal length and functional completion”, Acta Math., 126:3 (1957), 171–219 | DOI | MR

[6] A. V. Sychev, Moduli i prostranstvennye kvazikonformnye otobrazheniya, Novosibirsk, 1983

[7] W. P. Ziemer, “Extremal length and conformal capacity”, Trans. Amer. Math. Soc., 126:3 (1967), 460–473 | DOI | MR | Zbl

[8] V. N. Goldshtein, Yu. G. Reshetnyak, Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, M., 1983

[9] I. P. Mityuk, “Obobschennyi privedennyi modul i nekotorye ego primeneniya”, Izv. vyssh. uchebn. zavedenii. Matematika, 1964, no. 2, 110–119 | Zbl

[10] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, M., 1962

[11] S. N. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, M., 1977

[12] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-oe izd., M., 1966 | MR