@article{ZNSL_2006_337_a3,
author = {V. A. Shlyk and A. S. Gulyaev},
title = {On canonical mappings onto circular domains with radial slits},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {35--50},
year = {2006},
volume = {337},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a3/}
}
V. A. Shlyk; A. S. Gulyaev. On canonical mappings onto circular domains with radial slits. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 35-50. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a3/
[1] E. Reich, S. E. Warschawski, “On canonicl conformal maps of region of arbitrary connectivity”, Pacif. J. Math., 10:3 (1960), 965–989 | MR
[2] K. Strebel, “Die extremale Distanz zweier Enden einer Riemannschen Fläche”, Ann. Acad. Sci. Fenn. Ser. A, I, 179 (1955), 1–22 | MR
[3] E. Reich, “On radial slit mappings”, Ann. Acad. Sci. Fenn. Ser A, I, 296 (1961), 1–12. | MR
[4] I. N. Demshin, Yu. V. Dymchenko, V. A. Shlyk, “Kriterii nul-mnozhestv dlya vesovykh sobolevskikh prostranstv”, Zap. nauch. semin. POMI, 276, 2001, 52–82 | MR | Zbl
[5] B. Fuglede, “Extremal length and functional completion”, Acta Math., 126:3 (1957), 171–219 | DOI | MR
[6] A. V. Sychev, Moduli i prostranstvennye kvazikonformnye otobrazheniya, Novosibirsk, 1983
[7] W. P. Ziemer, “Extremal length and conformal capacity”, Trans. Amer. Math. Soc., 126:3 (1967), 460–473 | DOI | MR | Zbl
[8] V. N. Goldshtein, Yu. G. Reshetnyak, Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, M., 1983
[9] I. P. Mityuk, “Obobschennyi privedennyi modul i nekotorye ego primeneniya”, Izv. vyssh. uchebn. zavedenii. Matematika, 1964, no. 2, 110–119 | Zbl
[10] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, M., 1962
[11] S. N. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, M., 1977
[12] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-oe izd., M., 1966 | MR