The region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions. III
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 23-34
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper studies the region of values $D_{m,n}(T)$ of the system $\{f(z_1),\ldots,f(z_m),f(r_1),\ldots,f(r_n)\}$, where $m\geqslant1$; $n>1$; $z_j$, $j=1,\ldots,m$, are arbitrary fixed points of the disk $U=\{z;|z|<1\}$ with $\operatorname{Im}z_j\ne0$, $j=1,2,\dots,m$; $r_j$, $0, $j=1,2,\dots,n$, are fixed; $f\in T$, and the class $T$ consists of functions $f(z)=z+c_2z^2+\dots$ regular in the disk $U$ and satisfying the condition $\operatorname{Im}f(z)\cdot\operatorname{Im}z>0$ for $\operatorname{Im}z\ne0$, $z\in U$. An algebraic characterization of the set $D_{m,n}(T)$ in terms of nonnegative-definite Hermitian forms is provided, and all the boundary functions are described. As an implication, the region of values of $f(z_1)$ in the subclass of functions $f\in T$ with prescribed values $f(r_j)$ ($j=1,2,3$) is determined. Bibliography: 12 titles.
@article{ZNSL_2006_337_a2,
     author = {E. G. Goluzina},
     title = {The region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real {functions.~III}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {23--34},
     year = {2006},
     volume = {337},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a2/}
}
TY  - JOUR
AU  - E. G. Goluzina
TI  - The region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions. III
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 23
EP  - 34
VL  - 337
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a2/
LA  - ru
ID  - ZNSL_2006_337_a2
ER  - 
%0 Journal Article
%A E. G. Goluzina
%T The region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions. III
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 23-34
%V 337
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a2/
%G ru
%F ZNSL_2006_337_a2
E. G. Goluzina. The region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions. III. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 23-34. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a2/

[1] M. S. Robertson, “On the coefficients of typically-real function”, Bull. Amer. Math. Soc., 41:8 (1935), 565–572 | DOI | MR

[2] G. M. Goluzin, “O tipichno veschestvennykh funktsiyakh”, Mat. sb., 27(69):2 (1950), 201–218 | MR | Zbl

[3] W. Rogosinski, “Über positive harmonische Eutwicklungen und typisch-reelle Potenzreihen”, Math. Z., 35:1 (1932), 93–121 | DOI | MR

[4] S. I. Fedorov, “Moduli nekotorykh semeistv krivykh i mnozhestvo znachenii $f(\zeta_0)$ v klasse odnolistnykh funktsii s veschestvennymi koeffitsientami”, Zap. nauchn. semin. LOMI, 139, 1984, 156–167 | MR | Zbl

[5] E. G. Goluzina, “O mnozhestve znachenii nekotorykh sistem fukntsionalov v klasse tipichno veschestvennykh funktsii”, Vestn. LGU, ser. mat., mekh. i astron., 2:7 (1965), 45–63 | MR

[6] V. A. Andreeva, N. A. Lebedev, A. V. Stovbun, “Ob oblastyakh znachenii nekotorykh sistem funktsionalov v nekotorykh klassakh regulyarnykh funktsii”, Vestn. LGU, ser. mat., mekh. i astronom., 2:7 (1961), 8–22 | MR | Zbl

[7] E. G. Goluzina, “O mnozhestve znachenii sistemy $\{f(z_1),\dots,f(z_n)\}$ v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 314, 2004, 41–51 | MR | Zbl

[8] E. G. Goluzina, “O mnozhestve znachenii sistemy $\{f(z_1),\dots,f(z_n)\}$ v klasse tipichno veschestvennykh funktsii, II”, Zap. nauchn. semin. POMI, 323, 2005, 24–33 | MR | Zbl

[9] E. G. Goluzina, “O mnozhestve znachenii odnoi sistemy funktsionalov v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 226, 1996, 69–79

[10] E. G. Goluzina, “O mnozhestve znachenii sistem $\{f(z_1)$, $f'(z_1)\}$ i $\{f(z_1)$, $f(z_2)\}$ v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 254, 1998, 65–75 | MR

[11] E. G. Goluzina, “O mnozhestve znachenii sistemy $\{f(z_1),f(z_2),f(z_3)\}$ v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 302, 2003, 5–17 | MR

[12] M. G. Krein, A. A. Nudelman, Problema momentov Markova i ekstremalnye zadachi, M., 1973