Voir la notice du chapitre de livre
@article{ZNSL_2006_337_a2,
author = {E. G. Goluzina},
title = {The region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real {functions.~III}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {23--34},
year = {2006},
volume = {337},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a2/}
}
TY - JOUR
AU - E. G. Goluzina
TI - The region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions. III
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2006
SP - 23
EP - 34
VL - 337
UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a2/
LA - ru
ID - ZNSL_2006_337_a2
ER -
E. G. Goluzina. The region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions. III. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 23-34. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a2/
[1] M. S. Robertson, “On the coefficients of typically-real function”, Bull. Amer. Math. Soc., 41:8 (1935), 565–572 | DOI | MR
[2] G. M. Goluzin, “O tipichno veschestvennykh funktsiyakh”, Mat. sb., 27(69):2 (1950), 201–218 | MR | Zbl
[3] W. Rogosinski, “Über positive harmonische Eutwicklungen und typisch-reelle Potenzreihen”, Math. Z., 35:1 (1932), 93–121 | DOI | MR
[4] S. I. Fedorov, “Moduli nekotorykh semeistv krivykh i mnozhestvo znachenii $f(\zeta_0)$ v klasse odnolistnykh funktsii s veschestvennymi koeffitsientami”, Zap. nauchn. semin. LOMI, 139, 1984, 156–167 | MR | Zbl
[5] E. G. Goluzina, “O mnozhestve znachenii nekotorykh sistem fukntsionalov v klasse tipichno veschestvennykh funktsii”, Vestn. LGU, ser. mat., mekh. i astron., 2:7 (1965), 45–63 | MR
[6] V. A. Andreeva, N. A. Lebedev, A. V. Stovbun, “Ob oblastyakh znachenii nekotorykh sistem funktsionalov v nekotorykh klassakh regulyarnykh funktsii”, Vestn. LGU, ser. mat., mekh. i astronom., 2:7 (1961), 8–22 | MR | Zbl
[7] E. G. Goluzina, “O mnozhestve znachenii sistemy $\{f(z_1),\dots,f(z_n)\}$ v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 314, 2004, 41–51 | MR | Zbl
[8] E. G. Goluzina, “O mnozhestve znachenii sistemy $\{f(z_1),\dots,f(z_n)\}$ v klasse tipichno veschestvennykh funktsii, II”, Zap. nauchn. semin. POMI, 323, 2005, 24–33 | MR | Zbl
[9] E. G. Goluzina, “O mnozhestve znachenii odnoi sistemy funktsionalov v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 226, 1996, 69–79
[10] E. G. Goluzina, “O mnozhestve znachenii sistem $\{f(z_1)$, $f'(z_1)\}$ i $\{f(z_1)$, $f(z_2)\}$ v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 254, 1998, 65–75 | MR
[11] E. G. Goluzina, “O mnozhestve znachenii sistemy $\{f(z_1),f(z_2),f(z_3)\}$ v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 302, 2003, 5–17 | MR
[12] M. G. Krein, A. A. Nudelman, Problema momentov Markova i ekstremalnye zadachi, M., 1973