@article{ZNSL_2006_337_a13,
author = {A. Yu. Solynin},
title = {The analytic fixed point function and its properties},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {238--252},
year = {2006},
volume = {337},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a13/}
}
A. Yu. Solynin. The analytic fixed point function and its properties. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 238-252. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a13/
[1] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-oe izd., M., 1966 | MR
[2] D. Mejía, Ch. Pommerenke, “The analytic point function in the disc”, Comput. Methods Funct. Theory, 5:2 (2005), 275–299 | MR | Zbl
[3] D. Mejía, Ch. Pommerenke, The analytic point function, II, Preprint
[4] R. W. Barnard, K. Pearce, G. B. Williams, “Three extremal problems for hyperbolically convex functions”, Comput. Methods Funct. Theory, 4:1 (2004), 97–109 | MR | Zbl
[5] W. Ma, D. Minda, “Hyperbolically convex functions”, Ann. Polon. Math., 60 (1994), 81–100 | MR | Zbl
[6] D. Mejía, Ch. Pommerenke, “On hyperbolically convex functions”, J. Geom. Analysis, 10 (2000), 365–378 | MR | Zbl
[7] A. Yu. Solynin, “Hyperbolic convexity and the analytic fixed point function”, Proc. Amer. Math. Soc., 135:4 (2007), 1181–1186 | DOI | MR | Zbl
[8] B. Brown Flinn, “Hyperbolic convexity and level sets of analytic functions”, Indiana Univ. Math. J., 32 (1983), 831–841 | DOI | MR | Zbl
[9] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, M., 1962
[10] G. V. Kuzmina, “Moduli semeistv krivykh i kvadratichnye differentsialy”, Tr. Mat. in-ta AN SSSR, 139, 1980, 3–241 | MR
[11] W. K. Hayman, P. B. Kennedy, Subharmonic functions, Vol. 1, Academic Press, 1976
[12] A. Yu. Solynin, “Some extremal problems on the hyperbolic polygons”, Complex Variables Theory Appl., 36 (1998), 207–231 | MR | Zbl
[13] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi mat. nauk, 49 (1994), 3–76 | MR | Zbl
[14] A. Yu. Solynin, “Moduli i ekstremalno-metricheskie problemy”, Algebra i analiz, 11:1 (1999), 3–86 | MR | Zbl
[15] A. W. Marshall, I. Olkin, Inequalities: theory of majorization and its applications, New York, 1979 | MR
[16] W. K. Hayman,, Multivalent functions, Second ed., Cambridge Tracts in Math., 110, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[17] A. Baernstein II, “Integral means, univalent functions and circular symmetrization”, Acta Math., 133 (1974), 139–169 | DOI | MR