The analytic fixed point function and its properties
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 238-252 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Some properties of the analytic fixed point function, introduced recently by D. Mejia and Ch. Pommerenke, are discussed. In particular, several extremal properties of such functions, related to mappings from the unit disk onto symmetric Riemann surfaces, are established. Bibliography: 17 titles.
@article{ZNSL_2006_337_a13,
     author = {A. Yu. Solynin},
     title = {The analytic fixed point function and its properties},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {238--252},
     year = {2006},
     volume = {337},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a13/}
}
TY  - JOUR
AU  - A. Yu. Solynin
TI  - The analytic fixed point function and its properties
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 238
EP  - 252
VL  - 337
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a13/
LA  - ru
ID  - ZNSL_2006_337_a13
ER  - 
%0 Journal Article
%A A. Yu. Solynin
%T The analytic fixed point function and its properties
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 238-252
%V 337
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a13/
%G ru
%F ZNSL_2006_337_a13
A. Yu. Solynin. The analytic fixed point function and its properties. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 238-252. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a13/

[1] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-oe izd., M., 1966 | MR

[2] D. Mejía, Ch. Pommerenke, “The analytic point function in the disc”, Comput. Methods Funct. Theory, 5:2 (2005), 275–299 | MR | Zbl

[3] D. Mejía, Ch. Pommerenke, The analytic point function, II, Preprint

[4] R. W. Barnard, K. Pearce, G. B. Williams, “Three extremal problems for hyperbolically convex functions”, Comput. Methods Funct. Theory, 4:1 (2004), 97–109 | MR | Zbl

[5] W. Ma, D. Minda, “Hyperbolically convex functions”, Ann. Polon. Math., 60 (1994), 81–100 | MR | Zbl

[6] D. Mejía, Ch. Pommerenke, “On hyperbolically convex functions”, J. Geom. Analysis, 10 (2000), 365–378 | MR | Zbl

[7] A. Yu. Solynin, “Hyperbolic convexity and the analytic fixed point function”, Proc. Amer. Math. Soc., 135:4 (2007), 1181–1186 | DOI | MR | Zbl

[8] B. Brown Flinn, “Hyperbolic convexity and level sets of analytic functions”, Indiana Univ. Math. J., 32 (1983), 831–841 | DOI | MR | Zbl

[9] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, M., 1962

[10] G. V. Kuzmina, “Moduli semeistv krivykh i kvadratichnye differentsialy”, Tr. Mat. in-ta AN SSSR, 139, 1980, 3–241 | MR

[11] W. K. Hayman, P. B. Kennedy, Subharmonic functions, Vol. 1, Academic Press, 1976

[12] A. Yu. Solynin, “Some extremal problems on the hyperbolic polygons”, Complex Variables Theory Appl., 36 (1998), 207–231 | MR | Zbl

[13] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi mat. nauk, 49 (1994), 3–76 | MR | Zbl

[14] A. Yu. Solynin, “Moduli i ekstremalno-metricheskie problemy”, Algebra i analiz, 11:1 (1999), 3–86 | MR | Zbl

[15] A. W. Marshall, I. Olkin, Inequalities: theory of majorization and its applications, New York, 1979 | MR

[16] W. K. Hayman,, Multivalent functions, Second ed., Cambridge Tracts in Math., 110, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[17] A. Baernstein II, “Integral means, univalent functions and circular symmetrization”, Acta Math., 133 (1974), 139–169 | DOI | MR