Approximation by entire functions on subsets of a ray
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 233-237

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E\subset\mathbb R^+$ be a set consisting of finitely many intervals and a ray $[a,\infty)$, and let $H_\omega^r(E)$ be the set of functions defined on $E$ for which $$ |f^{(r)}(x)-f^{(r)}(y)|\le c_f\omega(|x-y|), $$ where the continuity module $\omega(x)$ satisfies the condition $$ \int_0^y\frac{\omega(x)}{x}dx+y\int_y^\infty\frac{\omega(x)}{x^2}dx\le C_0\omega(y), \quad y>0. $$ Let $C_\sigma^{(r,\omega)}$, $\sigma>0$, denote the class of entire functions $F$ of order 1/2 and of type $\sigma$ such that $$ \sup_{z\in\mathbb C\setminus\mathbb R^+}\frac{|F(z)|e^{-\sigma|\operatorname{Im}\sqrt{z}|}}{1+|z|^r\omega(|z|)+\sigma^{-2r}\omega(\sigma^{-2})}\infty. $$ In the paper, given a function $f\in H_\omega^r(E)$, we construct approximating functions $F$ in the class $C_\sigma^{(r,\omega)}$. Approximation by such functions on the set $E$ is analogous to approximation by polynomials on compacts. The analogy involves constructing a scale for measuring approximations and providing a constructive description of the class $H_\omega^r(E)$ in terms of the approximation rate, similar to that of polynomial approximation. Bibliography: 4 titles.
@article{ZNSL_2006_337_a12,
     author = {O. V. Sil'vanovich and N. A. Shirokov},
     title = {Approximation by entire functions on subsets of a ray},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {233--237},
     publisher = {mathdoc},
     volume = {337},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a12/}
}
TY  - JOUR
AU  - O. V. Sil'vanovich
AU  - N. A. Shirokov
TI  - Approximation by entire functions on subsets of a ray
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 233
EP  - 237
VL  - 337
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a12/
LA  - ru
ID  - ZNSL_2006_337_a12
ER  - 
%0 Journal Article
%A O. V. Sil'vanovich
%A N. A. Shirokov
%T Approximation by entire functions on subsets of a ray
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 233-237
%V 337
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a12/
%G ru
%F ZNSL_2006_337_a12
O. V. Sil'vanovich; N. A. Shirokov. Approximation by entire functions on subsets of a ray. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 233-237. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a12/