Approximation by entire functions on subsets of a ray
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 233-237
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $E\subset\mathbb R^+$ be a set consisting of finitely many intervals and a ray $[a,\infty)$, and let $H_\omega^r(E)$ be the set of functions defined on $E$ for which $$ |f^{(r)}(x)-f^{(r)}(y)|\le c_f\omega(|x-y|), $$ where the continuity module $\omega(x)$ satisfies the condition $$ \int_0^y\frac{\omega(x)}{x}dx+y\int_y^\infty\frac{\omega(x)}{x^2}dx\le C_0\omega(y), \quad y>0. $$ Let $C_\sigma^{(r,\omega)}$, $\sigma>0$, denote the class of entire functions $F$ of order 1/2 and of type $\sigma$ such that $$ \sup_{z\in\mathbb C\setminus\mathbb R^+}\frac{|F(z)|e^{-\sigma|\operatorname{Im}\sqrt{z}|}}{1+|z|^r\omega(|z|)+\sigma^{-2r}\omega(\sigma^{-2})}<\infty. $$ In the paper, given a function $f\in H_\omega^r(E)$, we construct approximating functions $F$ in the class $C_\sigma^{(r,\omega)}$. Approximation by such functions on the set $E$ is analogous to approximation by polynomials on compacts. The analogy involves constructing a scale for measuring approximations and providing a constructive description of the class $H_\omega^r(E)$ in terms of the approximation rate, similar to that of polynomial approximation. Bibliography: 4 titles.
@article{ZNSL_2006_337_a12,
author = {O. V. Sil'vanovich and N. A. Shirokov},
title = {Approximation by entire functions on subsets of a ray},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {233--237},
year = {2006},
volume = {337},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a12/}
}
O. V. Sil'vanovich; N. A. Shirokov. Approximation by entire functions on subsets of a ray. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 233-237. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a12/
[1] T. S. Davydova, N. A. Shirokov, “Priblizhenie funktsii iz klassa Geldera na poluosi”, Zap. nauchn. semin. POMI, 262, 1999, 127–137 | MR | Zbl
[2] N. A. Shirokov, “Priblizhenie mnogochlenami na kompaktakh s beskonechnosvyaznym dopolneniem”, Algebra i analiz, 10:1 (1998), 248–264 | MR | Zbl
[3] K. G. Mezhevich, N. A. Shirokov, “Polinomialnye priblizheniya na diz'yunktnykh otrezkakh”, Problemy matematicheskogo analiza, 1998, no. 18, 118–132 | Zbl
[4] E. M. Dynkin, “O ravnomernom priblizhenii funktsii v zhordanovykh oblastyakh”, Sib. mat. zh., 18:4 (1977), 775–786 | MR