Approximation by entire functions on subsets of a ray
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 233-237
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $E\subset\mathbb R^+$ be a set consisting of finitely many intervals and a ray $[a,\infty)$, and let $H_\omega^r(E)$ be the set of functions defined on $E$ for which
$$
|f^{(r)}(x)-f^{(r)}(y)|\le c_f\omega(|x-y|),
$$
where the continuity module $\omega(x)$ satisfies the condition
$$
\int_0^y\frac{\omega(x)}{x}dx+y\int_y^\infty\frac{\omega(x)}{x^2}dx\le C_0\omega(y), \quad y>0.
$$
Let $C_\sigma^{(r,\omega)}$, $\sigma>0$, denote the class of entire functions $F$ of order 1/2 and of type $\sigma$ such that 
$$
\sup_{z\in\mathbb C\setminus\mathbb R^+}\frac{|F(z)|e^{-\sigma|\operatorname{Im}\sqrt{z}|}}{1+|z|^r\omega(|z|)+\sigma^{-2r}\omega(\sigma^{-2})}\infty.
$$
In the paper, given a function $f\in H_\omega^r(E)$, we construct approximating functions $F$ in the class $C_\sigma^{(r,\omega)}$. Approximation by such functions on the set $E$ is analogous to approximation by polynomials on compacts. The analogy involves constructing a scale for measuring approximations and providing a constructive description of the class $H_\omega^r(E)$ in terms of the approximation rate, similar to that of polynomial approximation. Bibliography: 4 titles.
			
            
            
            
          
        
      @article{ZNSL_2006_337_a12,
     author = {O. V. Sil'vanovich and N. A. Shirokov},
     title = {Approximation by entire functions on subsets of a ray},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {233--237},
     publisher = {mathdoc},
     volume = {337},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a12/}
}
                      
                      
                    O. V. Sil'vanovich; N. A. Shirokov. Approximation by entire functions on subsets of a ray. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 233-237. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a12/