On the moments of elements of continued fractions for some rational numbers
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 13-22

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p$ be a prime and let $1\le a\le p-1$. In the paper, an asymptotics for the sum over $a$ of the moments of order $\alpha$ ($0\alpha1$) of the sequence of elements of the expansion of $a/p$ into a continued fraction is obtained. As a corollary, an upper bound for the number of those $a$ whose expansions contain at least one element larger than $\log^\lambda p$ ($\lambda>1$) is derived. Note that in the case considered, the set of elements has no limiting distribution as $p\to\infty$, which is in contrast with the case of rational fractions $b/c$, where $(b,c)=1$ and $b^2+c^2\le R^2$ ($R\to\infty$). Bibliography: 6 titles.
@article{ZNSL_2006_337_a1,
     author = {E. P. Golubeva},
     title = {On the moments of elements of continued fractions for some rational numbers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {13--22},
     publisher = {mathdoc},
     volume = {337},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a1/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - On the moments of elements of continued fractions for some rational numbers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 13
EP  - 22
VL  - 337
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a1/
LA  - ru
ID  - ZNSL_2006_337_a1
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T On the moments of elements of continued fractions for some rational numbers
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 13-22
%V 337
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a1/
%G ru
%F ZNSL_2006_337_a1
E. P. Golubeva. On the moments of elements of continued fractions for some rational numbers. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 13-22. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a1/