Estimates of the solution of model evolution generalized Stokes problem in weighted Hölder spaces
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 211-238 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove coercive estimates in anisotropic weighted Hölder spaces of the solution of the model Cauchy–Dirichlet problem in the half-space for a generalized Stokes system.
@article{ZNSL_2006_336_a9,
     author = {V. A. Solonnikov},
     title = {Estimates of the solution of model evolution generalized {Stokes} problem in weighted {H\"older} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {211--238},
     year = {2006},
     volume = {336},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a9/}
}
TY  - JOUR
AU  - V. A. Solonnikov
TI  - Estimates of the solution of model evolution generalized Stokes problem in weighted Hölder spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 211
EP  - 238
VL  - 336
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a9/
LA  - en
ID  - ZNSL_2006_336_a9
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%T Estimates of the solution of model evolution generalized Stokes problem in weighted Hölder spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 211-238
%V 336
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a9/
%G en
%F ZNSL_2006_336_a9
V. A. Solonnikov. Estimates of the solution of model evolution generalized Stokes problem in weighted Hölder spaces. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 211-238. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a9/

[1] V. A. Solonnikov, “Weighted Schauder estimates for evolution Stokes problem”, Annali Univ. Ferrara, 52 (2006), 137–172 | DOI | MR | Zbl

[2] V. A. Solonnikov, On the estimate of maxima moduli of the derivatives of solutions of homogeneous parabolic initial-boundary value problem, LOMI Preprint P-2-77, 1977, 3–20

[3] V. A. Solonnikov, “Initial boundary value problem for generalized Stokes equations in the half-space”, Zap. Nauchn. Semin. POMI, 271, 2000, 224–275 | MR | Zbl

[4] V. A. Solonnikov, “Estimates of solutions of nonstationary linearized system of Navier–Stokes eqyations”, Trudy MIAN SSSR, 70, 1964, 213–317 | MR | Zbl

[5] O. A. Ladyzhenskaya, G. A. Seregin, “Coercive estimates for solutions of linearizations of modified Navier–Stokes equations”, Dokl. Akad. Nauk, 370:6 (2000), 738–740 | MR | Zbl

[6] O. A. Ladyzhenskaya, “On multiplicators in Hölder spaces with nonhomogeneous metric”, Methods Appl. Anal., 7:3 (2000), 465–472 | MR | Zbl

[7] V. A. Solonnikov, “On the solvability of generalized Stokes equations in the space of periodic functions”, Annali Univ. Ferrara, 46 (2000), 219–250 | MR

[8] V. A. Solonnikov, “Model problem for $n$-dimensional generalized Stokes equations”, Nonl. Anal., 47 (2001), 4139–4150 | DOI | MR | Zbl

[9] V. A. Solonnikov, Schauder estimates for evolution generalized Stokes problem, PDMI Preprint 25-2005, 1–40 | MR