@article{ZNSL_2006_336_a8,
author = {G. A. Seregin},
title = {Estimates of suitable weak solutions to the {Navier{\textendash}Stokes} equations in critical {Morrey} spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {199--210},
year = {2006},
volume = {336},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a8/}
}
G. A. Seregin. Estimates of suitable weak solutions to the Navier–Stokes equations in critical Morrey spaces. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 199-210. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a8/
[1] L. Caffarelli, R.-V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl
[2] H. L. Choe, J. L. Lewis, “On the singular set in the Navier–Stokes equations”, J. Functional Anal., 175 (2000), 348–369 | DOI | MR | Zbl
[3] L. Escauriaza, G. Seregin, V. Šverák, “$L_{3,\infty}$-Solutions to the Navier–Stokes equations and backward uniqueness”, Uspekhi Matematicheskikh Nauk, 58:2(350) (2003), 3–44 | MR
[4] O. A. Ladyzhenskaya, G. A. Seregin, “On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations”, J. Math. Fluid Mech., 1 (1999), 356–387 | DOI | MR | Zbl
[5] F.-H. Lin, “A new proof of the Caffarelly–Kohn–Nirenberg theorem”, Comm. Pure Appl. Math., 51:3 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[6] G. A. Seregin, “On smoothness of $L_{3,\infty}$-solutions to the Navier–Stokes equations up to boundary”, Mathematische Annalen, 332 (2005), 219–238 | DOI | MR | Zbl