$L_{3,\infty}$-solutions to the 3D-Navier–Stokes system in the domain with a curved boundary
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 133-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We show that $L_{3,\infty}$-solutions to the three-dimensional Navier–Stokes equations near the curved smooth part of the boundary are Hölder continuous. The corresponding result near the plane part of the boundary was obtained earlier by G. Seregin.
@article{ZNSL_2006_336_a6,
     author = {A. S. Mikhailov and T. N. Shilkin},
     title = {$L_{3,\infty}$-solutions to the {3D-Navier{\textendash}Stokes} system in the domain with a~curved boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {133--152},
     year = {2006},
     volume = {336},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a6/}
}
TY  - JOUR
AU  - A. S. Mikhailov
AU  - T. N. Shilkin
TI  - $L_{3,\infty}$-solutions to the 3D-Navier–Stokes system in the domain with a curved boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 133
EP  - 152
VL  - 336
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a6/
LA  - en
ID  - ZNSL_2006_336_a6
ER  - 
%0 Journal Article
%A A. S. Mikhailov
%A T. N. Shilkin
%T $L_{3,\infty}$-solutions to the 3D-Navier–Stokes system in the domain with a curved boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 133-152
%V 336
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a6/
%G en
%F ZNSL_2006_336_a6
A. S. Mikhailov; T. N. Shilkin. $L_{3,\infty}$-solutions to the 3D-Navier–Stokes system in the domain with a curved boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 133-152. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a6/

[1] L. Caffarelli, R. V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl

[2] H. J. Choe, J. L. Lewis, “On the singular set in the Navier–Stokes equations”, J. Funct. Anal., 175:2 (2000), 348–369 | DOI | MR | Zbl

[3] L. Escauriaza, G. Seregin, V. Sverak, “$L_{3,\infty}$-solutions to the Navier–Stokes equations and backward uniqueness”, Uspekhi Matematicheskih Nauk, 58:2 (2003), 3–44 | MR

[4] L. Escauriaza, G. Seregin, V. Sverak, “On backward uniquness for parabolic equations”, Arch. Rat. Mech. Anal., 169:2 (2003), 147–157 | DOI | MR | Zbl

[5] L. Escauriaza, G. Seregin, V. Sverak, “Backward uniquness for the heat operator in half space”, Algebra and Analysis, 15:1 (2003), 201–214 | MR | Zbl

[6] E. Hopf, “Uber die Anfangswertaufgabe fur die hydrodynamischen Grundgleichungen”, Math. Nachr., 4 (1950), 213–231 | MR

[7] The mathematical theory of viscous incompressible flow, 1st ed., Gordon and Breach, New York, 1969 | MR | Zbl

[8] O. A. Ladyzhenskaya, G. A. Seregin, “On Partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations”, Journal of Mathematical Fluid Mechanics, 1 (1999), 356–387 | DOI | MR | Zbl

[9] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1967 | MR

[10] F.-H. Lin, “A new proof of the Caffarelli–Kohn–Nirenberg theorem”, Comm. Pure Appl. Math., 51:3 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[11] V. Scheffer, “Hausdorff measure and the Navier–Stokes equations”, Comm. Math. Phys., 55 (1977), 97–112 | DOI | MR | Zbl

[12] G. A. Seregin, “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary”, Journal of Mathematical Fluid Mechanics, 4:1 (2002), 1–29 | DOI | MR | Zbl

[13] G. A. Seregin, “Differentiability properties of weak solutions of the Navier–Stokes equations”, St.-Petersburg Math. Journal, 14:1 (2003), 147–178 | MR

[14] G. A. Seregin, “Some estimates near the boundary for solutions to the non-stationary linearized Navier–Stokes equations”, Zap. Nauchn. Semin. POMI, 271, 2000, 204–223 | MR | Zbl

[15] G. A. Seregin, “Remarks on regularity of weak solutions to the Navier–Stokes system near the boundary”, Zap. Nauchn. Semin. POMI, 295, 2003, 168–179 | MR | Zbl

[16] G. A. Seregin, “On smoothness of $L_{3,\infty}$-solutions to the Navier–Stokes equations up to boundary”, Mathematische Annalen, 332 (2005), 219–238 | DOI | MR | Zbl

[17] G. A. Seregin, T. N. Shilkin, V. A. Solonnikov, “Boundary Partial Regularity for the Navier–Stokes Equations”, Zap. Nauchn. Semin. POMI, 310, 2004, 158–190 | MR | Zbl

[18] G. A. Seregin, V. Šverak, “The Navier–Stokes equations and backward uniquness”, Nonlinear Problems in Mathematical Physics, II, International Mathematical Serie, 2, Kluwer, Plenum, New York, 2002, 353–366 | MR | Zbl

[19] V. A. Solonnikov, “Estimates of solutions of the nonstationary linearized system of Navier–Stokes equations”, Trudy Mat. Inst. Steklov, 70, 1964, 213–317 | MR | Zbl

[20] V. A. Solonnikov, “Estimates of solutions of the nonstationary Navier–Stokes system”, Zap. Nauchn. Semin. POMI, 38, 1973, 153–231 | MR | Zbl

[21] V. A. Solonnikov, “Estimates of solutions of the Stokes equations in Sobolev spaces with a mixed norm”, Zap. Nauchn. Semin. POMI, 288, 2002, 204–231 | MR | Zbl

[22] V. A. Solonnikov, “On the estimates of solutions of nonstationary Stokes problem in anisotropic S. L. Sobolev spaces and on the estimate of resolvent of the Stokes problem”, Uspekhi Matem. Nauk, 58:2(350) (2003), 123–156 | MR | Zbl