$L_{3,\infty}$-solutions to the 3D-Navier--Stokes system in the domain with a~curved boundary
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 133-152

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that $L_{3,\infty}$-solutions to the three-dimensional Navier–Stokes equations near the curved smooth part of the boundary are Hölder continuous. The corresponding result near the plane part of the boundary was obtained earlier by G. Seregin.
@article{ZNSL_2006_336_a6,
     author = {A. S. Mikhailov and T. N. Shilkin},
     title = {$L_{3,\infty}$-solutions to the {3D-Navier--Stokes} system in the domain with a~curved boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {133--152},
     publisher = {mathdoc},
     volume = {336},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a6/}
}
TY  - JOUR
AU  - A. S. Mikhailov
AU  - T. N. Shilkin
TI  - $L_{3,\infty}$-solutions to the 3D-Navier--Stokes system in the domain with a~curved boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 133
EP  - 152
VL  - 336
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a6/
LA  - en
ID  - ZNSL_2006_336_a6
ER  - 
%0 Journal Article
%A A. S. Mikhailov
%A T. N. Shilkin
%T $L_{3,\infty}$-solutions to the 3D-Navier--Stokes system in the domain with a~curved boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 133-152
%V 336
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a6/
%G en
%F ZNSL_2006_336_a6
A. S. Mikhailov; T. N. Shilkin. $L_{3,\infty}$-solutions to the 3D-Navier--Stokes system in the domain with a~curved boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 133-152. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a6/