$L_{3,\infty}$-solutions to the MHD equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 112-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove that weak solutions to the MHD system are smooth providing they belong to the so-called “critical” Ladyzhenskaya–Prodi–Serrin class $L_{3,\infty}$. Besides the independent interest, this result controverts the hypothesis on the existence of collapsing self-similar solutions to the MHD equations for which the generating profile belongs to the space $L_3$. So, we extend the results that were known before for the Navier–Stokes system, for the case of the MHD equations.
@article{ZNSL_2006_336_a5,
     author = {A. Mahalov and B. Nicolaenko and T. N. Shilkin},
     title = {$L_{3,\infty}$-solutions to the {MHD} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {112--132},
     year = {2006},
     volume = {336},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a5/}
}
TY  - JOUR
AU  - A. Mahalov
AU  - B. Nicolaenko
AU  - T. N. Shilkin
TI  - $L_{3,\infty}$-solutions to the MHD equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 112
EP  - 132
VL  - 336
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a5/
LA  - en
ID  - ZNSL_2006_336_a5
ER  - 
%0 Journal Article
%A A. Mahalov
%A B. Nicolaenko
%A T. N. Shilkin
%T $L_{3,\infty}$-solutions to the MHD equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 112-132
%V 336
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a5/
%G en
%F ZNSL_2006_336_a5
A. Mahalov; B. Nicolaenko; T. N. Shilkin. $L_{3,\infty}$-solutions to the MHD equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 112-132. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a5/

[1] L. Caffarelli, R. V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl

[2] L. Escauriaza, G. Seregin, V. Šverak, “$L_{3,\infty}$-solutions to the Navier–Stokes equations and backward uniqueness”, Uspekhi Matematicheskih Nauk, 58:2 (2003), 3–44 | MR

[3] L. Escauriaza, G. Seregin, V. Šverak, “On backward uniqueness for parabolic equations”, Arch. Rational Mech. Anal., 169:2 (2003), 147–157 | DOI | MR | Zbl

[4] Cheng He, Zhouping Xin, “On the regularity of weak solutions to the magnetohydrodynamic equations”, J. Differential Equations, 213:2 (2005), 235–254 | DOI | MR | Zbl

[5] O. A. Ladyzhenskaya, G. A. Seregin, “On Partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations”, J. Math. Fluid Mech., 1 (1999), 356–387 | DOI | MR | Zbl

[6] O. A. Ladyzhenskaya, V. A. Solonnikov, “Mathematical problems of hydrodynamics and magnetohydrodynamics of a viscous incompressible fluid”, Proceedings of V. A. Steklov Mathematical Institute, 59, 1960, 115–173, in Russian | MR

[7] Leray J., “Sur le mouvement d'un liquide visqueus emplissant l'espace”, Acta Math., 63 (1934), 193–248 | DOI | MR | Zbl

[8] F.-H. Lin, “A new proof of the Caffarell–Kohn–Nirenberg theorem”, Comm. Pure Appl. Math., 51:3 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[9] J. Nečas, M. Růžička, V. Šverák, “On Leray's self-similar solutions of the Navier–Stokes equations”, Acta Math., 176 (1996), 283–294 | DOI | MR | Zbl

[10] V. Scheffer, “Hausdorff measure and the Navier–Stokes equations”, Comm. Math. Phys., 55 (1977), 97–112 | DOI | MR | Zbl

[11] G. A. Seregin, “New version of Ladyzhenskaya–Prodi–Serrin condition”, Algebra and Analysis, 18:1 (2006), 124–143 | MR

[12] G. Seregin, “Local regularity of the Navier–Stokes equations”, Handbook of Mathematical Fluid Mechanics, 4 (to appear) | MR

[13] V. A. Solonnikov, “On the estimates of solutions of nonstationary Stokes problem in anisotropic S. L. Sobolev spaces and on the estimate of resolvent of the Stokes problem”, Uspekhi Matematicheskih Nauk, 58:2(350) (2003), 123–156 | MR | Zbl

[14] Tai-Peng Tsai, “On Leray's self-similar solutions of the Navier–Stokes equations satisfying Local Energy Inequality”, Arch. Rational Mech. Anal., 143 (1998), 29–51 | DOI | MR | Zbl