$L_{3,\infty}$-solutions to the MHD equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 112-132

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that weak solutions to the MHD system are smooth providing they belong to the so-called “critical” Ladyzhenskaya–Prodi–Serrin class $L_{3,\infty}$. Besides the independent interest, this result controverts the hypothesis on the existence of collapsing self-similar solutions to the MHD equations for which the generating profile belongs to the space $L_3$. So, we extend the results that were known before for the Navier–Stokes system, for the case of the MHD equations.
@article{ZNSL_2006_336_a5,
     author = {A. Mahalov and B. Nicolaenko and T. N. Shilkin},
     title = {$L_{3,\infty}$-solutions to the {MHD} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {112--132},
     publisher = {mathdoc},
     volume = {336},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a5/}
}
TY  - JOUR
AU  - A. Mahalov
AU  - B. Nicolaenko
AU  - T. N. Shilkin
TI  - $L_{3,\infty}$-solutions to the MHD equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 112
EP  - 132
VL  - 336
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a5/
LA  - en
ID  - ZNSL_2006_336_a5
ER  - 
%0 Journal Article
%A A. Mahalov
%A B. Nicolaenko
%A T. N. Shilkin
%T $L_{3,\infty}$-solutions to the MHD equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 112-132
%V 336
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a5/
%G en
%F ZNSL_2006_336_a5
A. Mahalov; B. Nicolaenko; T. N. Shilkin. $L_{3,\infty}$-solutions to the MHD equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 112-132. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a5/