@article{ZNSL_2006_336_a5,
author = {A. Mahalov and B. Nicolaenko and T. N. Shilkin},
title = {$L_{3,\infty}$-solutions to the {MHD} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {112--132},
year = {2006},
volume = {336},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a5/}
}
A. Mahalov; B. Nicolaenko; T. N. Shilkin. $L_{3,\infty}$-solutions to the MHD equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 112-132. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a5/
[1] L. Caffarelli, R. V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl
[2] L. Escauriaza, G. Seregin, V. Šverak, “$L_{3,\infty}$-solutions to the Navier–Stokes equations and backward uniqueness”, Uspekhi Matematicheskih Nauk, 58:2 (2003), 3–44 | MR
[3] L. Escauriaza, G. Seregin, V. Šverak, “On backward uniqueness for parabolic equations”, Arch. Rational Mech. Anal., 169:2 (2003), 147–157 | DOI | MR | Zbl
[4] Cheng He, Zhouping Xin, “On the regularity of weak solutions to the magnetohydrodynamic equations”, J. Differential Equations, 213:2 (2005), 235–254 | DOI | MR | Zbl
[5] O. A. Ladyzhenskaya, G. A. Seregin, “On Partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations”, J. Math. Fluid Mech., 1 (1999), 356–387 | DOI | MR | Zbl
[6] O. A. Ladyzhenskaya, V. A. Solonnikov, “Mathematical problems of hydrodynamics and magnetohydrodynamics of a viscous incompressible fluid”, Proceedings of V. A. Steklov Mathematical Institute, 59, 1960, 115–173, in Russian | MR
[7] Leray J., “Sur le mouvement d'un liquide visqueus emplissant l'espace”, Acta Math., 63 (1934), 193–248 | DOI | MR | Zbl
[8] F.-H. Lin, “A new proof of the Caffarell–Kohn–Nirenberg theorem”, Comm. Pure Appl. Math., 51:3 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[9] J. Nečas, M. Růžička, V. Šverák, “On Leray's self-similar solutions of the Navier–Stokes equations”, Acta Math., 176 (1996), 283–294 | DOI | MR | Zbl
[10] V. Scheffer, “Hausdorff measure and the Navier–Stokes equations”, Comm. Math. Phys., 55 (1977), 97–112 | DOI | MR | Zbl
[11] G. A. Seregin, “New version of Ladyzhenskaya–Prodi–Serrin condition”, Algebra and Analysis, 18:1 (2006), 124–143 | MR
[12] G. Seregin, “Local regularity of the Navier–Stokes equations”, Handbook of Mathematical Fluid Mechanics, 4 (to appear) | MR
[13] V. A. Solonnikov, “On the estimates of solutions of nonstationary Stokes problem in anisotropic S. L. Sobolev spaces and on the estimate of resolvent of the Stokes problem”, Uspekhi Matematicheskih Nauk, 58:2(350) (2003), 123–156 | MR | Zbl
[14] Tai-Peng Tsai, “On Leray's self-similar solutions of the Navier–Stokes equations satisfying Local Energy Inequality”, Arch. Rational Mech. Anal., 143 (1998), 29–51 | DOI | MR | Zbl