Rates of convergence of approximate attractors for parabolic equations
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 67-111
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We estimate rates of convergence of global attractors of approximations to the global attractor of a semilinear parabolic equation. We consider a general equation for which all fixed points are hyperbolic and the Chafee–Infante equation having a nonhyperbolic fixed point. The results are applied to an implicit discretization of a parabolic equation.
			
            
            
            
          
        
      @article{ZNSL_2006_336_a4,
     author = {V. S. Kolezhuk and S. Yu. Pilyugin},
     title = {Rates of convergence of approximate attractors for parabolic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--111},
     publisher = {mathdoc},
     volume = {336},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a4/}
}
                      
                      
                    TY - JOUR AU - V. S. Kolezhuk AU - S. Yu. Pilyugin TI - Rates of convergence of approximate attractors for parabolic equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 67 EP - 111 VL - 336 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a4/ LA - en ID - ZNSL_2006_336_a4 ER -
V. S. Kolezhuk; S. Yu. Pilyugin. Rates of convergence of approximate attractors for parabolic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 67-111. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a4/