Rates of convergence of approximate attractors for parabolic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 67-111

Voir la notice de l'article provenant de la source Math-Net.Ru

We estimate rates of convergence of global attractors of approximations to the global attractor of a semilinear parabolic equation. We consider a general equation for which all fixed points are hyperbolic and the Chafee–Infante equation having a nonhyperbolic fixed point. The results are applied to an implicit discretization of a parabolic equation.
@article{ZNSL_2006_336_a4,
     author = {V. S. Kolezhuk and S. Yu. Pilyugin},
     title = {Rates of convergence of approximate attractors for parabolic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--111},
     publisher = {mathdoc},
     volume = {336},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a4/}
}
TY  - JOUR
AU  - V. S. Kolezhuk
AU  - S. Yu. Pilyugin
TI  - Rates of convergence of approximate attractors for parabolic equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 67
EP  - 111
VL  - 336
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a4/
LA  - en
ID  - ZNSL_2006_336_a4
ER  - 
%0 Journal Article
%A V. S. Kolezhuk
%A S. Yu. Pilyugin
%T Rates of convergence of approximate attractors for parabolic equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 67-111
%V 336
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a4/
%G en
%F ZNSL_2006_336_a4
V. S. Kolezhuk; S. Yu. Pilyugin. Rates of convergence of approximate attractors for parabolic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 67-111. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a4/