A sufficient condition of local regularity for the Navier–Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 46-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove a local regularity result for the non-stationary three-dimensional Navier–Stokes.
@article{ZNSL_2006_336_a2,
     author = {W. Zaj\k{a}czkowski and G. A. Seregin},
     title = {A sufficient condition of local regularity for the {Navier{\textendash}Stokes} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {46--54},
     year = {2006},
     volume = {336},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a2/}
}
TY  - JOUR
AU  - W. Zajączkowski
AU  - G. A. Seregin
TI  - A sufficient condition of local regularity for the Navier–Stokes equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 46
EP  - 54
VL  - 336
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a2/
LA  - en
ID  - ZNSL_2006_336_a2
ER  - 
%0 Journal Article
%A W. Zajączkowski
%A G. A. Seregin
%T A sufficient condition of local regularity for the Navier–Stokes equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 46-54
%V 336
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a2/
%G en
%F ZNSL_2006_336_a2
W. Zajączkowski; G. A. Seregin. A sufficient condition of local regularity for the Navier–Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 46-54. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a2/

[1] S. Takahashi, “On interior regularity criteria for weak solutions of the Navier–Stokes equations”, Manuscripta Math., 69 (1990), 237–254 | DOI | MR | Zbl

[2] Z.-M. Chen, W. G. Price, “Blow-up rate estimates for weak solutions of the Navier–Stokes equations”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2625–2642 | DOI | MR | Zbl

[3] H. Kim, H. Kozono, “Interior regularity criteria in weak spaces for the Navier–Stokes equations”, Manuscripta Math., 115 (2004), 85–100 | DOI | MR | Zbl

[4] J. Serrin, “On the interior regularity of weak solutions of the Navier–Stokes equations”, Arch. Ration. Mech. Anal., 9 (1962), 187–195 | DOI | MR | Zbl

[5] M. Struwe, “On partial regularity results for the Navier–Stokes equations”, Comm. Pure Appl. Math., 41:4 (1988), 437–458 | DOI | MR | Zbl

[6] F.-H. Lin, “A new proof of the Caffarelly–Kohn–Nirenberg theorem”, Comm. Pure Appl. Math., 51:3 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[7] L. Caffarelli, R.-V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl

[8] G. A. Seregin, “On the number of singular points of weak solutions to the Navier–Stokes equations”, Comm. Pure Appl. Math., 54:8 (2001), 1019–1028 | DOI | MR | Zbl

[9] O. A. Ladyzhenskaya, G. A. Seregin, “On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations”, J. Math. Fluid Mech., 1 (1999), 356–387 | DOI | MR | Zbl

[10] L. Escauriaza, G. Seregin, V. Šverák, “$L_{3,\infty}$-Solutions to the Navier–Stokes equations and backward uniqueness”, Uspekhi Matematicheskih Nauk, 58:2(350) (2003), 3–44 | MR