@article{ZNSL_2006_336_a2,
author = {W. Zaj\k{a}czkowski and G. A. Seregin},
title = {A sufficient condition of local regularity for the {Navier{\textendash}Stokes} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {46--54},
year = {2006},
volume = {336},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a2/}
}
W. Zajączkowski; G. A. Seregin. A sufficient condition of local regularity for the Navier–Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 46-54. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a2/
[1] S. Takahashi, “On interior regularity criteria for weak solutions of the Navier–Stokes equations”, Manuscripta Math., 69 (1990), 237–254 | DOI | MR | Zbl
[2] Z.-M. Chen, W. G. Price, “Blow-up rate estimates for weak solutions of the Navier–Stokes equations”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2625–2642 | DOI | MR | Zbl
[3] H. Kim, H. Kozono, “Interior regularity criteria in weak spaces for the Navier–Stokes equations”, Manuscripta Math., 115 (2004), 85–100 | DOI | MR | Zbl
[4] J. Serrin, “On the interior regularity of weak solutions of the Navier–Stokes equations”, Arch. Ration. Mech. Anal., 9 (1962), 187–195 | DOI | MR | Zbl
[5] M. Struwe, “On partial regularity results for the Navier–Stokes equations”, Comm. Pure Appl. Math., 41:4 (1988), 437–458 | DOI | MR | Zbl
[6] F.-H. Lin, “A new proof of the Caffarelly–Kohn–Nirenberg theorem”, Comm. Pure Appl. Math., 51:3 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[7] L. Caffarelli, R.-V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl
[8] G. A. Seregin, “On the number of singular points of weak solutions to the Navier–Stokes equations”, Comm. Pure Appl. Math., 54:8 (2001), 1019–1028 | DOI | MR | Zbl
[9] O. A. Ladyzhenskaya, G. A. Seregin, “On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations”, J. Math. Fluid Mech., 1 (1999), 356–387 | DOI | MR | Zbl
[10] L. Escauriaza, G. Seregin, V. Šverák, “$L_{3,\infty}$-Solutions to the Navier–Stokes equations and backward uniqueness”, Uspekhi Matematicheskih Nauk, 58:2(350) (2003), 3–44 | MR