On homogenization of a periodic magnetic Schrödinger operator with degenerate lower edge of the spectrum
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 264-273 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We investigate the problem of homogenization of a periodic magnetic Schrödinger operator with degenerate lower edge of the spectrum. The standard problem of homogenization leads to a degenerate operator. To obtain more detailed information one is to modify the considered problem.
@article{ZNSL_2006_336_a11,
     author = {R. G. Shterenberg},
     title = {On homogenization of a periodic magnetic {Schr\"odinger} operator with degenerate lower edge of the spectrum},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {264--273},
     year = {2006},
     volume = {336},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a11/}
}
TY  - JOUR
AU  - R. G. Shterenberg
TI  - On homogenization of a periodic magnetic Schrödinger operator with degenerate lower edge of the spectrum
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 264
EP  - 273
VL  - 336
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a11/
LA  - ru
ID  - ZNSL_2006_336_a11
ER  - 
%0 Journal Article
%A R. G. Shterenberg
%T On homogenization of a periodic magnetic Schrödinger operator with degenerate lower edge of the spectrum
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 264-273
%V 336
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a11/
%G ru
%F ZNSL_2006_336_a11
R. G. Shterenberg. On homogenization of a periodic magnetic Schrödinger operator with degenerate lower edge of the spectrum. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 264-273. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a11/

[1] M. Sh. Birman, “Diskretnyi spektr v lakunakh vozmuschennogo periodicheskogo operatora Shredingera. II: Neregulyarnye vozmuscheniya”, Algebra i analiz, 9:6 (1997), 62–89 | MR | Zbl

[2] M. Sh. Birman, “O protsedure usredneniya dlya periodicheskikh operatorov vblizi kraya vnutrennei lakuny”, Algebra i analiz, 15:4 (2003), 61–71 | MR | Zbl

[3] M. Sh. Birman, M. Z. Solomyak, “Otsenki dlya singulyarnykh chisel integralnykh operatorov”, Uspekhi mat. nauk, 32:1 (1977), 17–84 | MR | Zbl

[4] M. Sh. Birman, T. A. Suslina, “Usrednenie mnogomernogo periodicheskogo ellipticheskogo operatora v okrestnosti kraya vnutrennei lakuny”, Zap. nauchn. semin. POMI, 318, 2004, 60–74 | MR | Zbl

[5] M. Sh. Birman, T. A. Suslina, “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl

[6] A. Bensoussan, J. L. Lions, G. Papanicolau, Asymptotic analysis for periodic structures, North Holland Publishing Company, Amsterdam, 1978 | MR

[7] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl

[8] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[9] R. G. Shterenberg, “Primer periodicheskogo magnitnogo operatora Shredingera s vyrozhdennym nizhnim kraem spektra”, Algebra i analiz, 16:2 (2004), 177–185 | MR | Zbl

[10] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Fizmatgiz, M., 1993 | MR | Zbl