Weighted estimates of a solution to the linear problem connected with one-phase Stefan problem in the case of the specific heat tends to zero
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 239-263 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove estimates in weighted Hölder norms for a solution to the model linear problem related with the one-phase Stefan problem with a small multiplier $\varepsilon$ at time derivative in the heat equation. These estimates are uniform with respect to parameter $\varepsilon$ and will be significant in the justification of passage to the limit in the one-phase Stefan problem with the specific heat tends to zero.
@article{ZNSL_2006_336_a10,
     author = {V. A. Solonnikov and E. V. Frolova},
     title = {Weighted estimates of a~solution to the linear problem connected with one-phase {Stefan} problem in the case of the specific heat tends to zero},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {239--263},
     year = {2006},
     volume = {336},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a10/}
}
TY  - JOUR
AU  - V. A. Solonnikov
AU  - E. V. Frolova
TI  - Weighted estimates of a solution to the linear problem connected with one-phase Stefan problem in the case of the specific heat tends to zero
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 239
EP  - 263
VL  - 336
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a10/
LA  - ru
ID  - ZNSL_2006_336_a10
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%A E. V. Frolova
%T Weighted estimates of a solution to the linear problem connected with one-phase Stefan problem in the case of the specific heat tends to zero
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 239-263
%V 336
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a10/
%G ru
%F ZNSL_2006_336_a10
V. A. Solonnikov; E. V. Frolova. Weighted estimates of a solution to the linear problem connected with one-phase Stefan problem in the case of the specific heat tends to zero. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 239-263. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a10/

[1] B. V. Bazalii, S. P. Degtyarev, “O klassicheskoi razreshimosti mnogomernoi zadachi Stefana pri konvektivnom dvizhenii vyazkoi neszhimaemoi zhidkosti”, Mat. sb., 132:1 (1987), 3–19 | MR

[2] E. V. Radkevich, “O razreshimosti obschikh nestatsionarnykh zadach so svobodnoi granitsei”, Nekotorye prilozheniya funktsionalnogo analiza k zadacham matematicheskoi fiziki, Novosibirsk, 1986, 85–111

[3] E. V. Radkevich, A. S. Melikulov, Kraevye zadachi so svobodnoi granitsei, Tashkent, 1988 | MR

[4] G. I. Bizhanova, V. A. Solonnikov, “O razreshimosti nachalno-kraevoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka s proizvodnoi po vremeni v granichnom uslovii v vesovom gelderovskom prostranstve funktsii”, Algebra i analiz, 5:1 (1993), 109–142 | MR | Zbl

[5] G. I. Bizhanova, V. A. Solonnikov, “O nekotorykh modelnykh zadachakh dlya parabolicheskikh uravnenii vtorogo poryadka s proizvodnoi po vremeni v kraevykh usloviyakh”, Algebra i analiz, 6:6 (1994), 30–50 | MR

[6] V. S. Belonosov, T. I. Zelenyak, Nelokalnye problemy v teorii kvazilineinykh parabolicheskikh uravnenii, NGU, Novosibirsk, 1975 | MR

[7] G. I. Bizhanova, V. A. Solonnikov, “O zadachakh so svobodnymi granitsami dlya parabolicheskikh uravnenii vtorogo poryadka”, Algebra i analiz, 12:6 (2000), 98–139 | MR