On solvability of Dirichlet problem to semilinear Schr\"odinger equation with singular potential
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 25-45
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove the  existence of a positive solution to the  Dirichlet problem for the  semilinear Schrödinger equation with  acritical singular potential. We assume that the boundary $\partial\Omega$ is average concave at the origin.
			
            
            
            
          
        
      @article{ZNSL_2006_336_a1,
     author = {A. V. Demyanov and A. I. Nazarov},
     title = {On solvability of {Dirichlet} problem to semilinear {Schr\"odinger} equation with singular potential},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {25--45},
     publisher = {mathdoc},
     volume = {336},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a1/}
}
                      
                      
                    TY - JOUR AU - A. V. Demyanov AU - A. I. Nazarov TI - On solvability of Dirichlet problem to semilinear Schr\"odinger equation with singular potential JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 25 EP - 45 VL - 336 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a1/ LA - ru ID - ZNSL_2006_336_a1 ER -
%0 Journal Article %A A. V. Demyanov %A A. I. Nazarov %T On solvability of Dirichlet problem to semilinear Schr\"odinger equation with singular potential %J Zapiski Nauchnykh Seminarov POMI %D 2006 %P 25-45 %V 336 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a1/ %G ru %F ZNSL_2006_336_a1
A. V. Demyanov; A. I. Nazarov. On solvability of Dirichlet problem to semilinear Schr\"odinger equation with singular potential. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 25-45. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a1/