On solvability of Dirichlet problem to semilinear Schrödinger equation with singular potential
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 25-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove the existence of a positive solution to the Dirichlet problem for the semilinear Schrödinger equation with acritical singular potential. We assume that the boundary $\partial\Omega$ is average concave at the origin.
@article{ZNSL_2006_336_a1,
     author = {A. V. Demyanov and A. I. Nazarov},
     title = {On solvability of {Dirichlet} problem to semilinear {Schr\"odinger} equation with singular potential},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {25--45},
     year = {2006},
     volume = {336},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a1/}
}
TY  - JOUR
AU  - A. V. Demyanov
AU  - A. I. Nazarov
TI  - On solvability of Dirichlet problem to semilinear Schrödinger equation with singular potential
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 25
EP  - 45
VL  - 336
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a1/
LA  - ru
ID  - ZNSL_2006_336_a1
ER  - 
%0 Journal Article
%A A. V. Demyanov
%A A. I. Nazarov
%T On solvability of Dirichlet problem to semilinear Schrödinger equation with singular potential
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 25-45
%V 336
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a1/
%G ru
%F ZNSL_2006_336_a1
A. V. Demyanov; A. I. Nazarov. On solvability of Dirichlet problem to semilinear Schrödinger equation with singular potential. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 25-45. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a1/

[1] A. I. Nazarov, “Neravenstva Khardi–Soboleva v konuse”, Probl. mat. an., 31, T. Rozhkovskaya, Novosibirsk, 2005, 39–46

[2] N. Ghoussoub, C. Yuan,, “Multiple solutions for quasi-linear PDEs involving critical Sobolev and Hardy exponents”, Trans. Amer. Math. Soc., 21 (2000), 5703–5743 | DOI | MR

[3] A. V. Demyanov, A. I. Nazarov, “O suschestvovanii ekstremalnoi funktsii v teoremakh vlozheniya Soboleva s predelnym pokazatelem”, Algebra i analiz, 17:5 (2005), 105–140 | MR | Zbl

[4] H. Egnell, “Positive solutions of semilinear equations in cones”, Trans. Amer. Math. Soc., 330:1 (1992), 191–201 | DOI | MR | Zbl

[5] Y. Pinchover, K. Tintarev, “Existence of minimizers for Schrödinger operators under domain perturbations with applications to Hardy's inequality”, Indiana Univ. Math. J., 54:4 (2005), 1061–1074 | DOI | MR | Zbl

[6] N. Ghoussoub, X. S. Kang, “Hardy–Sobolev critical elliptic equations with boundary singularities”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 767–793 | DOI | MR | Zbl

[7] N. Ghoussoub, F. Robert, The effect of curvature on the best constant in the Hardy–Sobolev inequalities, Pacific Inst. for the Math. Sci. Preprint, 2005 | MR

[8] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, 2 izd., Nauka, M., 1973 | MR

[9] D. Poia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, FML, M., 1962

[10] E. Lib, M. Loss, Analiz, Nauchnaya kniga, Novosibirsk, 1998

[11] E. Seneta, Regularly Varying Functions, Lect. Notes in Mathem., 508, 1976 | MR | Zbl

[12] P. L. Lions, “The concentration-compactness principle in the Calculus of Variations. The locally compact case”, Ann. Inst. H. Poincaré. Anal. Nonlin., 1 (1984), 109–145, 223–283 ; “The limit case”, Rev. Mat. Iberoamericana, 1 (1985), 45–121, 145–201 | Zbl | MR | Zbl

[13] P. L. Lions, F. Pacella, M. Tricarico, “Best constant in Sobolev inequalities for functions vanishimg on some part of the boundary and related questions”, Indiana Univ. Math. J., 37:2 (1988), 301–324 | DOI | MR | Zbl