Estimates of the deviation from the minimizer for variational problems with power growth functionals
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 5-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is concerned with the derivation of directly computable estimates of the difference between approximate solutions and the minimizer of the variational problem $$ J_\alpha[w]:=\int_\Omega\Big[\frac1\alpha|\nabla w|^\alpha-fw\Big]\,\mathrm dx\to\min. $$ If the functional has a superquadratic growth, then the estimate is given in terms of the natural energy norm. For problems with subquadratic growth it is more convenient to derive such estimates in terms of the dual variational problem. The estimates are obtained for the Dirichlet, Neumann and mixed boundary conditions.
@article{ZNSL_2006_336_a0,
     author = {M. Bildhauer and S. I. Repin},
     title = {Estimates of the deviation from the minimizer for variational problems with power growth functionals},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--24},
     year = {2006},
     volume = {336},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a0/}
}
TY  - JOUR
AU  - M. Bildhauer
AU  - S. I. Repin
TI  - Estimates of the deviation from the minimizer for variational problems with power growth functionals
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 5
EP  - 24
VL  - 336
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a0/
LA  - en
ID  - ZNSL_2006_336_a0
ER  - 
%0 Journal Article
%A M. Bildhauer
%A S. I. Repin
%T Estimates of the deviation from the minimizer for variational problems with power growth functionals
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 5-24
%V 336
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a0/
%G en
%F ZNSL_2006_336_a0
M. Bildhauer; S. I. Repin. Estimates of the deviation from the minimizer for variational problems with power growth functionals. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 5-24. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a0/

[1] R. A. Adams, Sobolev spaces, Academic Press, New York–San Francisco–London, 1975 | MR | Zbl

[2] M. Ainsworth, J. T. Oden, A posteriori error estimation in finite element analysis, Wiley and Sons, New York, 2000 | MR | Zbl

[3] I. Babuška, W. C. Rheinboldt, “Error estimates for adaptive finite element computations”, SIAM J. Numer. Anal., 15 (1978), 736–754 | DOI | MR | Zbl

[4] W. Bangerth, R. Rannacher, Adaptive finite element methods for differential equations, Birkhäuser, Berlin, 2003 | MR | Zbl

[5] M. Bildhauer, Convex variational problems: linear, nearly linear and anisotropic growth conditions, Lect. Notes Math., 1818, Springer, Berlin-Heidelberg-New York, 2003 | MR | Zbl

[6] M. Bildhauer, M. Fuchs, S. Repin, A posteriori error estimates for stationary slow flows of power-law fluids, Preprint 155, Saarland University, 2005

[7] I. Ekeland, R. Temam, Convex analysis and variational problems, North-Holland, Amsterdam, 1976 | MR | Zbl

[8] J. Frehse, G. Seregin, “Regularity for solutions of variational problems in the deformation theory of plasticity with logarithmic hardening”, Proc. St. Petersburg Math. Soc., 5 (1998), 184–222 | Zbl

[9] M. Fuchs, S. Repin, A posteriori estimates of functional–type for variational problems related to generalized Newtonian fluids, Preprint 146, Saarland University, 2005

[10] M. Fuchs, G. A. Seregin, Variational methods for problems from plasticity theory and for generalized Newtonian fluids, Lect. Notes Math., Springer, Berlin, 1749 | MR

[11] H. Gaevskii, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | MR

[12] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York, 1968 | MR | Zbl

[13] S. G. Mikhlin, Variational methods in mathematical physics, Pergamon, Oxford, 1964 | MR

[14] C. B. Morrey, Multiple integrals in the calculus of variations, Grundlehren der Math. Wiss. in Einzeldarstellungen, 130, Springer, Berlin-Heidelberg-New York, 1966 | MR | Zbl

[15] P. Mosolov, V. Myasnokov, Mechanics of rigid plastic bodies, Nauka, Moscow, 1981 | Zbl

[16] P. Neittaanmäki, S. Repin, Reliable methods for computer simulation. Error control and a posteriori estimates, Elsevier, New York, 2004 | MR | Zbl

[17] S. Repin, “A posteriori error estimation for nonlinear variational problems by duality theory”, Zap. Nauchn. Semin. POMI, 243, 1997, 201–214 | MR | Zbl

[18] S. Repin, “A posteriori error estimation for variational problems with uniformly convex functionals”, Math. Comp., 69:230 (2000), 481–500 | DOI | MR | Zbl

[19] S. Repin, “Two-sided estimates for deviation from an exact solution to uniformly elliptic equation”, Trudi St.-Petersburg Math. Society, 9 (2001), 148–179 | MR | Zbl

[20] S. Repin, “Aposteriori estimates for the Stokes problem”, J. Math. Sci., 109:5 (2002), 1950–1964 | DOI | MR

[21] S. L. Sobolev, Some applications of functional analysis in mathematical physics, 3rd edition., Translations of Mathematical Monographs, 90, American Mathematical Society, Providence, Rhode Island, 1991, $1^{st}$ edition: Izdt. Leningrad Gos. Univ., Leningrad 1955 | MR | Zbl

[22] R.Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley and Sons, Teubner, New York, 1996 | Zbl