@article{ZNSL_2006_336_a0,
author = {M. Bildhauer and S. I. Repin},
title = {Estimates of the deviation from the minimizer for variational problems with power growth functionals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--24},
year = {2006},
volume = {336},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a0/}
}
TY - JOUR AU - M. Bildhauer AU - S. I. Repin TI - Estimates of the deviation from the minimizer for variational problems with power growth functionals JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 5 EP - 24 VL - 336 UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a0/ LA - en ID - ZNSL_2006_336_a0 ER -
M. Bildhauer; S. I. Repin. Estimates of the deviation from the minimizer for variational problems with power growth functionals. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 5-24. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a0/
[1] R. A. Adams, Sobolev spaces, Academic Press, New York–San Francisco–London, 1975 | MR | Zbl
[2] M. Ainsworth, J. T. Oden, A posteriori error estimation in finite element analysis, Wiley and Sons, New York, 2000 | MR | Zbl
[3] I. Babuška, W. C. Rheinboldt, “Error estimates for adaptive finite element computations”, SIAM J. Numer. Anal., 15 (1978), 736–754 | DOI | MR | Zbl
[4] W. Bangerth, R. Rannacher, Adaptive finite element methods for differential equations, Birkhäuser, Berlin, 2003 | MR | Zbl
[5] M. Bildhauer, Convex variational problems: linear, nearly linear and anisotropic growth conditions, Lect. Notes Math., 1818, Springer, Berlin-Heidelberg-New York, 2003 | MR | Zbl
[6] M. Bildhauer, M. Fuchs, S. Repin, A posteriori error estimates for stationary slow flows of power-law fluids, Preprint 155, Saarland University, 2005
[7] I. Ekeland, R. Temam, Convex analysis and variational problems, North-Holland, Amsterdam, 1976 | MR | Zbl
[8] J. Frehse, G. Seregin, “Regularity for solutions of variational problems in the deformation theory of plasticity with logarithmic hardening”, Proc. St. Petersburg Math. Soc., 5 (1998), 184–222 | Zbl
[9] M. Fuchs, S. Repin, A posteriori estimates of functional–type for variational problems related to generalized Newtonian fluids, Preprint 146, Saarland University, 2005
[10] M. Fuchs, G. A. Seregin, Variational methods for problems from plasticity theory and for generalized Newtonian fluids, Lect. Notes Math., Springer, Berlin, 1749 | MR
[11] H. Gaevskii, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | MR
[12] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York, 1968 | MR | Zbl
[13] S. G. Mikhlin, Variational methods in mathematical physics, Pergamon, Oxford, 1964 | MR
[14] C. B. Morrey, Multiple integrals in the calculus of variations, Grundlehren der Math. Wiss. in Einzeldarstellungen, 130, Springer, Berlin-Heidelberg-New York, 1966 | MR | Zbl
[15] P. Mosolov, V. Myasnokov, Mechanics of rigid plastic bodies, Nauka, Moscow, 1981 | Zbl
[16] P. Neittaanmäki, S. Repin, Reliable methods for computer simulation. Error control and a posteriori estimates, Elsevier, New York, 2004 | MR | Zbl
[17] S. Repin, “A posteriori error estimation for nonlinear variational problems by duality theory”, Zap. Nauchn. Semin. POMI, 243, 1997, 201–214 | MR | Zbl
[18] S. Repin, “A posteriori error estimation for variational problems with uniformly convex functionals”, Math. Comp., 69:230 (2000), 481–500 | DOI | MR | Zbl
[19] S. Repin, “Two-sided estimates for deviation from an exact solution to uniformly elliptic equation”, Trudi St.-Petersburg Math. Society, 9 (2001), 148–179 | MR | Zbl
[20] S. Repin, “Aposteriori estimates for the Stokes problem”, J. Math. Sci., 109:5 (2002), 1950–1964 | DOI | MR
[21] S. L. Sobolev, Some applications of functional analysis in mathematical physics, 3rd edition., Translations of Mathematical Monographs, 90, American Mathematical Society, Providence, Rhode Island, 1991, $1^{st}$ edition: Izdt. Leningrad Gos. Univ., Leningrad 1955 | MR | Zbl
[22] R.Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley and Sons, Teubner, New York, 1996 | Zbl