Estimates of the deviation from the minimizer for variational problems with power growth functionals
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 5-24
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper is concerned with the derivation of directly computable estimates of the difference between approximate solutions and the minimizer of the variational problem
$$
J_\alpha[w]:=\int_\Omega\Big[\frac1\alpha|\nabla w|^\alpha-fw\Big]\,\mathrm dx\to\min.
$$
If the  functional has a superquadratic growth, then the estimate is given in terms of the natural energy norm. For problems with subquadratic growth it is more convenient to derive such estimates in terms of the dual variational problem. The estimates are obtained for the Dirichlet, Neumann and mixed boundary conditions.
			
            
            
            
          
        
      @article{ZNSL_2006_336_a0,
     author = {M. Bildhauer and S. I. Repin},
     title = {Estimates of the deviation from the minimizer for variational problems with power growth functionals},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--24},
     publisher = {mathdoc},
     volume = {336},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a0/}
}
                      
                      
                    TY - JOUR AU - M. Bildhauer AU - S. I. Repin TI - Estimates of the deviation from the minimizer for variational problems with power growth functionals JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 5 EP - 24 VL - 336 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a0/ LA - en ID - ZNSL_2006_336_a0 ER -
%0 Journal Article %A M. Bildhauer %A S. I. Repin %T Estimates of the deviation from the minimizer for variational problems with power growth functionals %J Zapiski Nauchnykh Seminarov POMI %D 2006 %P 5-24 %V 336 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a0/ %G en %F ZNSL_2006_336_a0
M. Bildhauer; S. I. Repin. Estimates of the deviation from the minimizer for variational problems with power growth functionals. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 5-24. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a0/