Twist of quantum groups and noncommutative field theory
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 188-204 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The role of quantum universal enveloping algebras of symmetries in constructing a noncommutative geometry of space-time and corresponding field theory is discussed. It is shown that in the framework of the twist theory of quantum groups, the noncommutative (super) space-time defined by coordinates with Heisenberg commutation relations, is (super) Poincaré invariant as well as the corresponding field theory. Noncommutative parameters of global transformations are introduced.
@article{ZNSL_2006_335_a9,
     author = {P. P. Kulish},
     title = {Twist of quantum groups and noncommutative field theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {188--204},
     year = {2006},
     volume = {335},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a9/}
}
TY  - JOUR
AU  - P. P. Kulish
TI  - Twist of quantum groups and noncommutative field theory
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 188
EP  - 204
VL  - 335
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a9/
LA  - ru
ID  - ZNSL_2006_335_a9
ER  - 
%0 Journal Article
%A P. P. Kulish
%T Twist of quantum groups and noncommutative field theory
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 188-204
%V 335
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a9/
%G ru
%F ZNSL_2006_335_a9
P. P. Kulish. Twist of quantum groups and noncommutative field theory. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 188-204. http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a9/

[1] P. Aschieri, M. Dimitrijevic, F. Meyer, J. Wess, Noncommutative geometry and gravity, arXiv: /hep-th/0510059 | MR

[2] L. Alvarez-Gaumé, F. Meyer, M. A. Vázquez-Mozo, Comments on noncommutative gravity, arXiv: /hep-th/0605113 | MR

[3] M. Chaichian, P. P. Kulish, K. Nishijima, A. Tureanu, “On Lorentz invariant interpretation of noncommutative space-time and its implications on noncommutative QFT”, Phys. Lett. B, 604 (2004), 98–102 ; arXiv: /hep-th/0408069 | DOI | MR

[4] M. R. Douglas, N. A. Nekrasov, “Noncommutative field theory”, Rev. Mod. Phys., 73 (2001), 977–1029 | DOI | MR | Zbl

[5] R. J. Szabo, “Quantum field theories on noncommutative spaces”, Phys. Rep., 378 (2003), 207–299 | DOI | MR | Zbl

[6] V. G. Drinfeld, “Quantum groups”, Proceedings of the International Congress of Mathematicians 1986, ed. A. M. Gleason, American Mathematical Society, Providence, 1987, 798–820 | MR

[7] N. Yu. Reshetikhin, L. A. Takhtajan, L. D. Faddeev, “Quantization of Lie groups and Lie algebras”, Algebra and Analysis, 1 (1989), 178–206 | MR

[8] V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl

[9] P. P. Kulish, A. I. Mudrov, “Twist related geometries on $q$-Minkowski space”, Proc. Steklov Math. Inst., 226, 1999, 97–111 ; arXiv: /math.QA/9901019 | MR | Zbl

[10] R. Oeckl, “Untwisting noncommutative $R^d$ and the equivalence of quantum field theories”, Nucl. Phys. B, 581 (2000), 559–574 ; arXiv: /hep-th/0003018 | DOI | MR | Zbl

[11] J. Madore, An Introduction to Noncommutative Differential Geometry and Its Applications, Cambridge University Press, Cambridge, 2000

[12] J. Wess, Deformed coordinate space derivatives, arXiv: /hep-th/0408080 | MR

[13] J. Lukierski, M. Woronowicz, “New Lie-algebraic and quadratic deformations of Minkovski space from twisted Poincare symmetries”, Phys. Lett. B, 633 (2006), 116–124 ; arXiv: /hep-th/0508083 | DOI | MR

[14] N. Seiberg, E. Witten, “String theory and noncommutative geometry”, J. High Energy Phys., 9909 (1999), 032 ; arXiv: /hep-th/9908142 | DOI | MR | DOI

[15] D. Sternheimer, “Deformation quantization: Twenty years after”, Particles, Fields, and Gravitation, eds. J. Rembelinski, AIP Press, New York, 1998, 107–145 | MR | Zbl

[16] V. G. Drinfeld, “Quasi-Hopf algebras”, Leningrad Math. J., 1 (1990), 1419–1457 | MR

[17] A. Giaqunto, J. J. Zhang, “Bialgebra actions, twists, and universal deformation formulas”, J. Pure. Appl. Algebra, 128 (1998), 133–151 ; arXiv: /hep-th/9411140 | DOI | MR

[18] P. Bonneau, M. Gerstenhaber, A. Giaqunto, D. Sternheimer, “Quantum groups and deformation quantization: Explicit approaches and implicit aspects”, J. Math. Phys., 45 (2004), 3703–3741 | DOI | MR | Zbl

[19] R. Banerjee, C. Lee, S. Siwach, Derformed conformal and super-Poincaré symmetries in the non-(anti)commutative spaces, arXiv: /hep-th/0511205

[20] M. Chaichian, P. Presnajder, A. Tureanu, “New concept of relativistic invariance in NC space-time: Twisted Poincaré symmetry and its implication”, Phys. Rev. Lett., 94 (2005), 151602 ; arXiv: /hep-th/0409096 | DOI

[21] A. P. Balachandran, G. Mangano, A. Pinzul, S. Vaidya, Spin and statistics on the Groenwald-Moyal plane: Pauli-forbidden levels and transitions, arXiv: /hep-th/0508002 | MR

[22] A. Tureanu, “Twist and spin-statistic relation in noncommutative quantum field theory”, Phys. Lett., in press

[23] C. Gonera, P. Kosinski, P. Maslanka, S. Giller, “Space-time symmetry of noncommutative field theory”, Phys. Lett. B, 622 (2005), 192–197 | DOI | MR

[24] P. P. Kulish, “Noncommutative geometry and quantum field theory”, Noncommutative geometry and representation theory in mathematical physics, Contem. Math., 391, American Mathematical Society, Providence, RI, 2005, 213–221 | MR | Zbl

[25] M. Chaichian, A. Tureanu, “Twist symmetry and gauge invariance”, Phys. Lett. B, 637 (2006), 199–202 ; arXiv: /hep-th/0604025 | DOI | MR

[26] N. Seiberg, “Noncommutative superspace, $\mathcal{N} = 1/2$ supersymmetry, field theory and string theory”, J. High Energy Phys., 0306 (2003), 010 ; arXiv: /hep-th/0305248 | DOI | MR

[27] E. Ivanov, O. Lechtenfeld, B. Zupnik, “Nilpotent deformations of $N=2$ superspace”, J. High Energy Phys., 0402 (2004), 012 ; arXiv: /hep-th/0308012 | DOI | MR

[28] Y. Kobayashi, S. Sasaki, “Lorentz invariant and supersymmetric interpretation of noncommutative quantum field theory”, Int. J. Mod. Phys. A, 20 (2005), 7175–7188 ; arXiv: /hep-th/0410164 | DOI | MR | Zbl

[29] B. Zupnik, “Twist-deformed supersymmetries in non-anticommutative superspace”, Phys. Lett. B, 627 (2005), 208–216 ; arXiv: /hep-th/0506043 | DOI | MR

[30] M. Arai, M. Chaichian, K. Nishijima, A. Tureanu, Non-anticommutative supersymmetric field theory and quantum shift, arXiv: /hep-th/0604029 | MR