Factorization of the $\mathrm{R}$-matrix.~I
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 134-163
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the general rational solution of the Yang–Baxter equation with the symmetry algebra
$s\ell(3)$. The $R$-operator acting in the tensor product of two arbitrary representations of the symmetry algebra can be represented as the product of the simpler “building blocks” – $\mathbb R$-operators. The $\mathbb R$-operators are constructed explicitly and have simple structure. We construct in a such way the general rational solution of the Yang–Baxter equation with the symmetry algebra $s\ell(3)$. To illustrate the factorization in the simplest situation we treat also the $s\ell(2)$ case.
@article{ZNSL_2006_335_a7,
author = {S. \`E. Derkachev},
title = {Factorization of the $\mathrm{R}${-matrix.~I}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {134--163},
publisher = {mathdoc},
volume = {335},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a7/}
}
S. È. Derkachev. Factorization of the $\mathrm{R}$-matrix.~I. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 134-163. http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a7/