Factorization of the $\mathrm{R}$-matrix. I
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 134-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the general rational solution of the Yang–Baxter equation with the symmetry algebra $s\ell(3)$. The $R$-operator acting in the tensor product of two arbitrary representations of the symmetry algebra can be represented as the product of the simpler “building blocks” – $\mathbb R$-operators. The $\mathbb R$-operators are constructed explicitly and have simple structure. We construct in a such way the general rational solution of the Yang–Baxter equation with the symmetry algebra $s\ell(3)$. To illustrate the factorization in the simplest situation we treat also the $s\ell(2)$ case.
@article{ZNSL_2006_335_a7,
     author = {S. \`E. Derkachev},
     title = {Factorization of the $\mathrm{R}${-matrix.~I}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {134--163},
     year = {2006},
     volume = {335},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a7/}
}
TY  - JOUR
AU  - S. È. Derkachev
TI  - Factorization of the $\mathrm{R}$-matrix. I
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 134
EP  - 163
VL  - 335
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a7/
LA  - en
ID  - ZNSL_2006_335_a7
ER  - 
%0 Journal Article
%A S. È. Derkachev
%T Factorization of the $\mathrm{R}$-matrix. I
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 134-163
%V 335
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a7/
%G en
%F ZNSL_2006_335_a7
S. È. Derkachev. Factorization of the $\mathrm{R}$-matrix. I. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 134-163. http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a7/

[1] P. P. Kulish, E. K. Sklyanin, “On the solutions of the Yang–Baxter equation”, Zap. Nauchn. Semin. LOMI, 95, 1980, 129 | MR

[2] M. Jimbo, “Introduction to the Yang–Baxter equation”, Int. J. Mod. Phys. A, 4 (1983), 3759 ; Yang–Baxter equation in integrable systems, Adv. Ser. Math. Phys., 10, World Scientific, Singapore, 1990 | DOI | MR | MR | Zbl

[3] V. G. Drinfeld, “Hopf algebras and Yang–Baxter equation”, Soviet Math. Dokl., 32 (1985), 254; “Quantum Groups”, Proc. Int. Congress Math. (Berkeley, 1986), AMS, Providence, RI, 1987, 798 | MR

[4] V. G. Drinfeld, “Quasi-Hopf algebras”, Leningrad. Math. J., 1 (1990), 1419 | MR

[5] V. Terras, “Drinfel'd twists and functional Bethe ansatz”, Lett. Math. Phys., 48 (1999), 263 ; H. Pfeiffer, “Factorizing twists and the universal R-matrix of the Yangian $Y(s\ell_2)$”, J. Phys. A: Math. Gen., 33 (2000), 8929 | DOI | MR | Zbl | DOI | MR | Zbl

[6] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Lect. Notes in Physics, 151, 1982, 61 ; L. D. Faddeev, How Algebraic Bethe Anstz works for integrable model, , 1995 ; E. K. Sklyanin, “Quantum Inverse Scattering Method. Selected Topics”, Quantum Group and Quantum Integrable Systems, Nankai Lectures in Mathematical Physics, ed. Mo-Lin Ge, World Scientific, Singapore, 1992, 63–97 ; arXiv: /hep-th/9605187arXiv: /hep-th/9211111 | MR | Zbl | MR | MR

[7] P. P. Kulish, N. Yu. Reshetikhin, E. K. Sklyanin, “Yang–Baxter equation and representation theory”, Lett. Math. Phys., 5 (1981), 393–403 | DOI | MR | Zbl

[8] N. MacKay, “Rational R-matrices in irreducible representations”, J. Phys. A, 24 (1991), 4017 ; R-B. Zhang, M. Gould, A. Bracken, “From the representation of the braid group to solutions of the Yang–Baxter equation”, Nucl. Phys. B, 354 (1991), 625 ; M. Gould, Y-Z. Zhang, R-matrices and the tensor product graph method, arXiv: /hep-th/0205071 | DOI | MR | Zbl | DOI | MR | MR

[9] E. K. Sklyanin, private communication

[10] D. P. Zhelobenko, Compact Lie Groups and their Representations, AMS, Providence, Rhode Island, 1973 | Zbl

[11] J. J. de Swart, “The Octet model and its Clebsch–Gordan coefficients”, Rev. Mod. Phys., 35 (1963), 916 | DOI | MR

[12] M. Shifman, “New findings in quantum mechanics (partial algebraization of the spectral problem)”, ITEP Lectures on Particle Physics and Field Theory, In 2 vols., 1999, 775–875 ; World. Sci. Lect. Notes Phys., 62 | MR | Zbl

[13] P. P. Kulish, N. Yu. Reshetikhin, “On GL(3)-invariant solutions to the Yang–Baxter equation and the associated quantum systems”, Zap. Nauchn. Semin. LOMI, 120, 1982, 92 | MR

[14] A. Molev, Yangians and their applications, , 2002 arXiv: /math.QA/0211288 | MR

[15] A. Molev, M. Nazarov, G. Olshanski, “Yangian and classical Lie algebras”, Russian Math. Surveys, 51:2 (1996), 205–282 | DOI | MR | Zbl

[16] P. P. Kulish, Yang–Baxter equation and reflection equations in integrable models, arXiv: /hep-th/9507070 | MR

[17] S. I. Alishauskas, P. P. Kulish, “Spectral resolution of the su(3)-invariant solutions to the Yang–Baxter equation”, Zap. Nauchn.Semin. LOMI, 145, 1985, 3 | MR | Zbl

[18] E. K. Sklyanin, “Classical limits of the Yang–Baxter equation”, J. Soviet. Math., 40 (1988), 93 | DOI | Zbl

[19] S. Derkachov, D. Karakhanyan, R. Kirschner, “Universal R-matrix as integral operator”, Nucl. Phys. B, 618 (2001), 589 | DOI | MR | Zbl

[20] L. N. Lipatov, “High-energy asymptotics of multicolor QCD and exactly solvable lattice models”, JETP. Lett., 59 (1994), 596 ; L. N. Lipatov, “Duality symmetry of reggeon interactions in multicolor QCD”, Nucl. Phys. B, 548 (1999), 328 | DOI

[21] L. D. Faddeev, G. P. Korchemsky, “Hight-energy QCD as a completely integrable model”, Phys. Lett. B, 342 (1995), 311 | DOI | MR

[22] D. Karakhanian, R. Kirschner, Conserved currents of the three-reggeon interaction, ; “High-energy scattering in gauge theories and integrable spin chains”, Fortschr. Phys., 48 (2000), 139 ; arXiv: /hep-th/9902147arXiv: /hep-th/9902031 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[23] C-N.Yang, “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19 (1967), 1312 | DOI | MR | Zbl