@article{ZNSL_2006_335_a5,
author = {A. G. Bytsko},
title = {On one ansatz for $\mathrm{sl}_2$-invariant $R$-matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {100--118},
year = {2006},
volume = {335},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a5/}
}
A. G. Bytsko. On one ansatz for $\mathrm{sl}_2$-invariant $R$-matrices. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 100-118. http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a5/
[1] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Lect. Notes Physics, 151, 1982, 61–119 | MR | Zbl
[2] L. D. Faddeev, “How algebraic Bethe ansatz works for integrable model”, Symétries quantiques (Les Houches 1995), North-Holland, Amsterdam, 1998, 149–219 ; arXiv: /hep-th/9605187 | MR | Zbl
[3] A. G. Bytsko, “O $U_q(\mathrm{Sl}_2)$-invariantnykh $R$-matritsakh dlya starshikh spinov”, Algebra i analiz, 17:3 (2005), 24–46 | MR
[4] T. Kennedy, “Solutions of the Yang–Baxter equation for isotropic quantum spin chains”, J. Phys., 25 (1992), 2809–2817 | MR | Zbl
[5] L. Bidenkharn, Dzh. Lauk, Uglovoi moment v kvantovoi mekhanike, Mir, M., 1984
[6] P. P. Kulish, N. Yu. Reshetikhin, E. K. Sklyanin, “Yang–Baxter equations and representation theory, I”, Lett. Math. Phys., 5 (1981), 393–403 | DOI | MR | Zbl