Coherent states for generalized oscillator in finite-dimensional Hilbert space
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 75-99
Voir la notice de l'article provenant de la source Math-Net.Ru
The costruction of oscillator-like systems connected with the given set of orthogonal polynomials and coherent states for such systems developed by authors is extended to the case of the systems with finite-dimensional state space. As example we concider the generalized oscillator connected with Krawtchouk polynomials.
@article{ZNSL_2006_335_a4,
author = {V. V. Borzov and E. V. Damaskinsky},
title = {Coherent states for generalized oscillator in finite-dimensional {Hilbert} space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {75--99},
publisher = {mathdoc},
volume = {335},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a4/}
}
TY - JOUR AU - V. V. Borzov AU - E. V. Damaskinsky TI - Coherent states for generalized oscillator in finite-dimensional Hilbert space JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 75 EP - 99 VL - 335 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a4/ LA - ru ID - ZNSL_2006_335_a4 ER -
V. V. Borzov; E. V. Damaskinsky. Coherent states for generalized oscillator in finite-dimensional Hilbert space. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 75-99. http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a4/