Integrable models for the vicious and friendly walkers
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 59-74

Voir la notice de l'article provenant de la source Math-Net.Ru

Random walks of the essentially different classes of random walkers, namely of the vicious and of the friendly ones, on the one-dimensional lattices with the periodic boundary conditions are considered. The walkers are called vicious since arriving on the same lattice site they annihilate not only one another but all the rest as well. On the contrary, the arbitrary number of the friendly walkers can share the same lattice sites. It is shown that the natural model describing the behavior of the friendly walkers is the integrable model of the boson type. The representation of the generating function for the number of the lattice paths made by the fixed number of the friendly walkers for the certain number of steps is obtained.
@article{ZNSL_2006_335_a3,
     author = {N. M. Bogolyubov},
     title = {Integrable models for the vicious and friendly walkers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {59--74},
     publisher = {mathdoc},
     volume = {335},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a3/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
TI  - Integrable models for the vicious and friendly walkers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 59
EP  - 74
VL  - 335
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a3/
LA  - ru
ID  - ZNSL_2006_335_a3
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%T Integrable models for the vicious and friendly walkers
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 59-74
%V 335
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a3/
%G ru
%F ZNSL_2006_335_a3
N. M. Bogolyubov. Integrable models for the vicious and friendly walkers. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 59-74. http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a3/