Integrable models for the vicious and friendly walkers
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 59-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Random walks of the essentially different classes of random walkers, namely of the vicious and of the friendly ones, on the one-dimensional lattices with the periodic boundary conditions are considered. The walkers are called vicious since arriving on the same lattice site they annihilate not only one another but all the rest as well. On the contrary, the arbitrary number of the friendly walkers can share the same lattice sites. It is shown that the natural model describing the behavior of the friendly walkers is the integrable model of the boson type. The representation of the generating function for the number of the lattice paths made by the fixed number of the friendly walkers for the certain number of steps is obtained.
@article{ZNSL_2006_335_a3,
     author = {N. M. Bogolyubov},
     title = {Integrable models for the vicious and friendly walkers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {59--74},
     year = {2006},
     volume = {335},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a3/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
TI  - Integrable models for the vicious and friendly walkers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 59
EP  - 74
VL  - 335
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a3/
LA  - ru
ID  - ZNSL_2006_335_a3
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%T Integrable models for the vicious and friendly walkers
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 59-74
%V 335
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a3/
%G ru
%F ZNSL_2006_335_a3
N. M. Bogolyubov. Integrable models for the vicious and friendly walkers. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 59-74. http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a3/

[1] P. J. Forrester, “Exact solution of the lock step model of vicious walkers”, J. Phys. A.: Math. Gen., 23 (1990), 1259 | DOI | MR | Zbl

[2] T. H. Baker, P. J. Forrester, “Random walks and random fixed-point free involutions”, J. Phys. A.: Math. Gen., 34 (2001), L381 | DOI | MR | Zbl

[3] P. J. Forrester, “Random walks and random permutations”, J. Phys. A.: Math. Gen., 34 (2001), L417 | DOI | MR | Zbl

[4] T. Nagao, P. J. Forrester, “Vicious random walkers and a discretization of Gaussian random matrix ensembles”, Nucl. Phys. B, 620 (2002), 551 | DOI | MR | Zbl

[5] J. W. Essam, A. J. Guttmann, “Vicious walkers and directed polymer networks in general dimensions”, Phys. Rev. E, 52 (1995), 5849 | DOI | MR

[6] A. J. Guttmann, A. L. Owczarec, X. G. Viennot, “Vicious walkers and Young tableaux. I: without walls”, J. Phys. A: Math. Gen., 31 (1998), 8123 | DOI | MR | Zbl

[7] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, “Vicious walkers, friendly walkers and Young tableaux. II: With a wall”, J. Phys. A: Math. Gen., 33 (2000), 8835 | DOI | MR | Zbl

[8] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, “Vicious walkers, friendly walkers and Young tableaux. III: Between two walls”, J. Stat. Phys., 110 (2003), 1069 | DOI | MR | Zbl

[9] T. Tsuchiya, M. Katori, “Chiral Potts models, friendly walkers and directed percolation problem”, J. Phys. Soc. Japan, 67 (1988), 1655

[10] M. Katori, H. Tanemura, “Scaling limit of vicious walks and two-matrix model”, Phys. Rev. E, 66 (2002), 011105 | DOI

[11] M. Katori, H. Tanemura, T. Nagao, N. Komatsuda, “Vicious walk with a wall, non-colliding meanders, chiral and Bogoliubov–de Gennes random matrices”, Phys. Rev. E, 68 (2003), 021112 | DOI

[12] M. Katori, H. Tanemura, Functional central limit theorems for vicious walkers, , 2004 arXiv: /math.PR/0203286 | MR

[13] N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model”, J. Phys. A: Math. Gen., 38 (2005), 9415 | DOI | MR | Zbl

[14] N. M. Bogolyubov, Perechislenie ploskikh razbienii i algebraicheskii anzats Bete, Preprint POMI-04/2006

[15] D. M. Bressoud, Proofs and Confirmations. The Story of the Alternating Sign Matrix Conjecture, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[16] M. E. Fisher, “Walks, walls, wetting and melting”, J. Stat. Phys., 34 (1984), 667 | DOI | MR | Zbl

[17] N. M. Bogolyubov, “$XX0$ tsepochka Geizenberga i sluchainye bluzhdaniya”, Zap. nauchn. semin. POMI, 325, 2005, 13 | Zbl

[18] F. Colomo, A. G. Izergin, V. E. Korepin, V. Tognetti, “Temperature correlation functions in the $XX0$ Heisenberg chain”, Teor. i mat. fizika, 94 (1993), 19 | MR

[19] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Izd-vo “Mir”, Moskva, 1985 | MR

[20] N. M. Bogoliubov, R. K. Bullough, G. Pang, “Exact solution of the $q$-boson hopping model”, Phys. Rev. B, 47 (1993), 11495 | DOI

[21] N. M. Bogoliubov, R. K. Bullough, J. Timonen, “Critical behavior for correlated strongly coupled boson systems in 1+1 dimensions”, Phys. Rev. Lett., 25 (1994), 3933 | DOI | MR | Zbl

[22] N. M. Bogoliubov, A. G. Izergin, N. A. Kitanine, “Correlation functions for a strongly correlated boson systems”, Nucl. Phys. B, 516 (1998), 501 | DOI | MR | Zbl