@article{ZNSL_2006_335_a3,
author = {N. M. Bogolyubov},
title = {Integrable models for the vicious and friendly walkers},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {59--74},
year = {2006},
volume = {335},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a3/}
}
N. M. Bogolyubov. Integrable models for the vicious and friendly walkers. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 59-74. http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a3/
[1] P. J. Forrester, “Exact solution of the lock step model of vicious walkers”, J. Phys. A.: Math. Gen., 23 (1990), 1259 | DOI | MR | Zbl
[2] T. H. Baker, P. J. Forrester, “Random walks and random fixed-point free involutions”, J. Phys. A.: Math. Gen., 34 (2001), L381 | DOI | MR | Zbl
[3] P. J. Forrester, “Random walks and random permutations”, J. Phys. A.: Math. Gen., 34 (2001), L417 | DOI | MR | Zbl
[4] T. Nagao, P. J. Forrester, “Vicious random walkers and a discretization of Gaussian random matrix ensembles”, Nucl. Phys. B, 620 (2002), 551 | DOI | MR | Zbl
[5] J. W. Essam, A. J. Guttmann, “Vicious walkers and directed polymer networks in general dimensions”, Phys. Rev. E, 52 (1995), 5849 | DOI | MR
[6] A. J. Guttmann, A. L. Owczarec, X. G. Viennot, “Vicious walkers and Young tableaux. I: without walls”, J. Phys. A: Math. Gen., 31 (1998), 8123 | DOI | MR | Zbl
[7] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, “Vicious walkers, friendly walkers and Young tableaux. II: With a wall”, J. Phys. A: Math. Gen., 33 (2000), 8835 | DOI | MR | Zbl
[8] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, “Vicious walkers, friendly walkers and Young tableaux. III: Between two walls”, J. Stat. Phys., 110 (2003), 1069 | DOI | MR | Zbl
[9] T. Tsuchiya, M. Katori, “Chiral Potts models, friendly walkers and directed percolation problem”, J. Phys. Soc. Japan, 67 (1988), 1655
[10] M. Katori, H. Tanemura, “Scaling limit of vicious walks and two-matrix model”, Phys. Rev. E, 66 (2002), 011105 | DOI
[11] M. Katori, H. Tanemura, T. Nagao, N. Komatsuda, “Vicious walk with a wall, non-colliding meanders, chiral and Bogoliubov–de Gennes random matrices”, Phys. Rev. E, 68 (2003), 021112 | DOI
[12] M. Katori, H. Tanemura, Functional central limit theorems for vicious walkers, , 2004 arXiv: /math.PR/0203286 | MR
[13] N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model”, J. Phys. A: Math. Gen., 38 (2005), 9415 | DOI | MR | Zbl
[14] N. M. Bogolyubov, Perechislenie ploskikh razbienii i algebraicheskii anzats Bete, Preprint POMI-04/2006
[15] D. M. Bressoud, Proofs and Confirmations. The Story of the Alternating Sign Matrix Conjecture, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[16] M. E. Fisher, “Walks, walls, wetting and melting”, J. Stat. Phys., 34 (1984), 667 | DOI | MR | Zbl
[17] N. M. Bogolyubov, “$XX0$ tsepochka Geizenberga i sluchainye bluzhdaniya”, Zap. nauchn. semin. POMI, 325, 2005, 13 | Zbl
[18] F. Colomo, A. G. Izergin, V. E. Korepin, V. Tognetti, “Temperature correlation functions in the $XX0$ Heisenberg chain”, Teor. i mat. fizika, 94 (1993), 19 | MR
[19] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Izd-vo “Mir”, Moskva, 1985 | MR
[20] N. M. Bogoliubov, R. K. Bullough, G. Pang, “Exact solution of the $q$-boson hopping model”, Phys. Rev. B, 47 (1993), 11495 | DOI
[21] N. M. Bogoliubov, R. K. Bullough, J. Timonen, “Critical behavior for correlated strongly coupled boson systems in 1+1 dimensions”, Phys. Rev. Lett., 25 (1994), 3933 | DOI | MR | Zbl
[22] N. M. Bogoliubov, A. G. Izergin, N. A. Kitanine, “Correlation functions for a strongly correlated boson systems”, Nucl. Phys. B, 516 (1998), 501 | DOI | MR | Zbl