Defining relations on the Hamiltonians of $XXX$ and $XXZ$ $R$-matrices and new integrable spin-orbital chains
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 50-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Several complete systems of integrability conditions on a spin chain Hamiltonian density matrix are presented. The corresponding formulas for $R$-matrices are also given. The latter is expressed via the local Hamiltonian density in the form similar to spin one half $XXX$ and $XXZ$ models. The result is applied to the problem of integrability of $SU(2)\times SU(2)$- and $SU(2)\times U(1)$-invariant spin-orbital chains (the Kugel–Homskii–Inagaki model). The eight new integrable cases are found. One of them corresponds to the Temperley–Lieb algebra, the others three to the algebra associated with the $XXX$, $XXZ$ and graded $XXZ$ models. The last two $R$-matrices are also presented.
@article{ZNSL_2006_335_a2,
     author = {P. N. Bibikov},
     title = {Defining relations on the {Hamiltonians} of $XXX$ and $XXZ$ $R$-matrices and new integrable spin-orbital chains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {50--58},
     year = {2006},
     volume = {335},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a2/}
}
TY  - JOUR
AU  - P. N. Bibikov
TI  - Defining relations on the Hamiltonians of $XXX$ and $XXZ$ $R$-matrices and new integrable spin-orbital chains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 50
EP  - 58
VL  - 335
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a2/
LA  - ru
ID  - ZNSL_2006_335_a2
ER  - 
%0 Journal Article
%A P. N. Bibikov
%T Defining relations on the Hamiltonians of $XXX$ and $XXZ$ $R$-matrices and new integrable spin-orbital chains
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 50-58
%V 335
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a2/
%G ru
%F ZNSL_2006_335_a2
P. N. Bibikov. Defining relations on the Hamiltonians of $XXX$ and $XXZ$ $R$-matrices and new integrable spin-orbital chains. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 50-58. http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a2/

[1] L. D. Faddeev, “How the algebraic Bethe Ansatz works for integrable models”, Symmetries quantique, Proceedings of the Les Houches summer school Session LXIV, eds. A. Connes, K. Gawedzki, J. Zinn-Justin, North-Holland, Amsterdam, 1998 | MR | Zbl

[2] N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, M., 1992 | MR | Zbl

[3] P. P. Kulish, E. K. Sklyanin, “O resheniyakh uravneniya Yanga-Bakstera”, Zap. nauchn. semin. LOMI, 95, 1980, 129–160 | MR

[4] P. P. Kulish, E. K. Sklyanin,, Quantum spectral transform method. Recent developments, Proc. Symp. on Integrable Quantum Fields, Lecture Notes in Physics, 151, eds. J. Hietarinta, C. Montonen, Springer, New York, 1982 | MR

[5] K.-H. Mütter, A. Schmidtt, “Solvable spin-1 models in one dimension”, J. Phys. A: Math. Gen., 28 (1995), 2265–2276 | DOI | MR | Zbl

[6] P. N. Bibikov, “How to solve Yang-Baxter equation using the Taylor expansion of R-matrix”, Phys. Lett. A, 314 (2003), 209–213 | DOI | MR | Zbl

[7] P. N. Bibikov, “$R$-matritsy dlya $SU(2)$-invariantnykh sdvoennykh spinovykh tsepochek”, Zap. nauchn. semin. POMI, 291, 2002, 24 | MR | Zbl

[8] P. P. Kulish, “On spin systems related to the Temperley-Lieb algebra”, J. Phys. A: Math. Gen., 36 (2003), L489–L493 | DOI | MR | Zbl

[9] H. N. V. Temperley, E. H. Lieb, “Relations between 'percolation' and 'colouring' problem and other graph-theoretical problems assocoated with regular planar lattices: some exact results for the 'percolation' problem”, Proc. R. Soc. A, 322, 251 | DOI | MR | Zbl

[10] K. I. Kugel, D. I. Khomskii, “Kristallicheskaya struktura i magnitnye svoistva veschestv s orbitalnym vyrozhdeniem”, ZhETF, 64:4 (1973), 1429–1439

[11] K. I. Kugel, D. I. Khomskii, “Effekt Yana-Tellera i magnetizm: soedineniya perekhodnykh metallov”, UFN, 136:4 (1982), 621–664

[12] S. Inagaki, “Effect of orbital degeneracy and intra-atomic exchange on the occurence of ferromagnetism”, J. Phys. Soc. Japan, 39:3 (1975), 596–604 | DOI | MR

[13] G. V. Uimin, “Odnomernaya zadacha dlya $S=1$ s modifitsirovannym antiferromagnitnym gamiltonianom”, Pisma v ZhETF, 12 (1970), 332–335

[14] C. K. Lai, “Lattice gas with nearest neighbor interaction in one dimension with arbitrary statistics”, J. Math. Phys., 15 (1974), 1675–1676 | DOI

[15] B. Sutherland, “Model for a multicomponent quantum system”, Phys. Rev. B, 12 (1975), 3795–3805 | DOI

[16] Y.-Q. Li, M. Ma. D.-N. Shi, F.-C. Zhang, “Ground state and excitations of a spin chain with orbital degeneracy”, Phys. Rev. B, 60 (1999), 12781–12787 | DOI

[17] M. T. Batchelor, X.-W. Guan, N. Oelkers, K. Sakai, Z. Tsuboi, A. Foerster, “Exact results for the thermal and magnetic properties of strong coupling ladder compounds”, Phys. Rev. Lett., 91 (2003), 217202 | DOI

[18] S. K. Pati, R. R. P. Singh, D. I. Khomskii, “Alternating spin and orbital dimerization and spin-gap formation in coupled spin-orbital systems”, Phys. Rev. Lett., 81 (1998), 5406 | DOI | MR

[19] A. K. Kolezhuk, H.-J. Mikeska, U. Schollwöck, “Elementary excitations in one-dimensional spin-orbit models: Neutral and charged solutions and their bound states”, Phys. Rev. B, 63 (2001), 064418 | DOI