On classification of the compatible Lie–Poisson brackets on the manifold $e^*(3)$
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 231-245 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Classification of the compatible ie–Poisson brackets on the manifold $e^*(3)$ is constructed. The corresponding bi-Hamiltonian systems are the classical integrable cases of the Euler–Poisson and Kirvhhof equations describing the motion of a solid body.
@article{ZNSL_2006_335_a11,
     author = {A. V. Tsiganov},
     title = {On classification of the compatible {Lie{\textendash}Poisson} brackets on the manifold~$e^*(3)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {231--245},
     year = {2006},
     volume = {335},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a11/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - On classification of the compatible Lie–Poisson brackets on the manifold $e^*(3)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 231
EP  - 245
VL  - 335
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a11/
LA  - ru
ID  - ZNSL_2006_335_a11
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T On classification of the compatible Lie–Poisson brackets on the manifold $e^*(3)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 231-245
%V 335
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a11/
%G ru
%F ZNSL_2006_335_a11
A. V. Tsiganov. On classification of the compatible Lie–Poisson brackets on the manifold $e^*(3)$. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 231-245. http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a11/

[1] A. Clebsch, “Über die Bewegung eines Körpers in einer Flüssigkeit”, Math. Annalen, 3 (1870), 238–262 | DOI | MR

[2] I. M. Gelfand, I. Zakharevich, “On the local geometry of a bi-Hamiltonian structure”, In the Gelfand Mathematical Seminars (1990–1992), eds. L. Corwin et al., Birkauser, Boston, 1993, 51–112 | MR | Zbl

[3] I. V. Komarov, V. V. Sokolov, A. V. Tsiganov, “Poisson maps and integrable deformations of Kowalevski top”, J. Phys. A, 36 (2003), 8035–8048 | DOI | MR | Zbl

[4] A. M. Lyapunov, “Novyi sluchai integriruemosti uravnenii dvizheniya tverdogo tela v zhidkosti”, Soobsch. Khark. mat. obsch-va, ser. 2, 4 (1893), 81–85

[5] I. D. Marshall, “The Kowalevski top: its $r$-matrix interpretation and bihamiltonian formulation”, Commun. Math. Phys., 191 (1998), 723–734 | DOI | MR | Zbl

[6] F. Magri, “Eight lectures on Integrable Systems”, Lect. Notes Physics, 495, Springer Verlag, Berlin-Heidelberg, 1997, 256–296 | MR | Zbl

[7] C. Morosi, G. Tondo, “The quasi-bi-Hamiltonian formulation of the Lagrange top”, J. Phys. A, 35 (2002), 1741–1750 | DOI | MR | Zbl

[8] T. Ratiu, “Euler–Poisson equations on Lie algebras and the $n$-dimensional heavy rigid body”, Amer. J. Math., 104 (1982), 409–448 | DOI | MR | Zbl

[9] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, Integriruemye sistemy. Teoretiko-gruppovoi podkhod, RKhD, Moskva–Izhevsk, 2003

[10] V. N. Rubanovskii, “Novye sluchai integriruemosti uravnenii dvizheniya tyazhelogo tverdogo tela v zhidkosti”, Vestnik MGU, ser. mat. mekh., 2 (1968), 99–106 | Zbl

[11] V. A. Steklov, O dvizhenii tverdogo tela v zhidkosti, Kharkov, 1893

[12] A. V. Tsiganov, “On the Steklov–Lyapunov case of the rigid body motion”, Regular and Chaotic Dynamics, 9:2 (2004), 77–91 | DOI | MR