Lie algebra of formal vector fields extended by formal $\mathbf g$-valued functions
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 205-230

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we consider infinite-dimensional Lie-algebra $W_n\ltimes\mathbf g\otimes\mathcal O_n$ of formal vector fields on $n$-dimensional plane, extended by formal $\mathbf g$-valued functions of $n$ variables. Here $\mathbf g$ is an arbitrary Lie algebra. We show that the cochain complex of this Lie algebra is quasi-isomorphic to the quotient of Weyl algebra of $(\mathbf{gl}_n\oplus\mathbf g)$ by $(2n+1)$-st term of standard filtration. We consider separately the case of reductive Lie algebra $\mathbf g$. We show how one can use the methods of formal geometry, to construct characteristic classes of bundles. For every $\mathbf G$-bundle on $n$-dimensional complex manifold we construct a natural homomorphism from ring $A$ of relative cohomologies of Lie algebra $W_n\ltimes \mathbf g\otimes\mathcal O_n$ to ring of tohomologies of the manifold. We show that generators of ring $A$ mapped under this homomorphism to characteristic classes of tangent and $\mathbf G$-bundles.
@article{ZNSL_2006_335_a10,
     author = {A. S. Khoroshkin},
     title = {Lie algebra of formal vector fields extended by formal $\mathbf g$-valued functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {205--230},
     publisher = {mathdoc},
     volume = {335},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a10/}
}
TY  - JOUR
AU  - A. S. Khoroshkin
TI  - Lie algebra of formal vector fields extended by formal $\mathbf g$-valued functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 205
EP  - 230
VL  - 335
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a10/
LA  - ru
ID  - ZNSL_2006_335_a10
ER  - 
%0 Journal Article
%A A. S. Khoroshkin
%T Lie algebra of formal vector fields extended by formal $\mathbf g$-valued functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 205-230
%V 335
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a10/
%G ru
%F ZNSL_2006_335_a10
A. S. Khoroshkin. Lie algebra of formal vector fields extended by formal $\mathbf g$-valued functions. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 205-230. http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a10/