Lie algebra of formal vector fields extended by formal $\mathbf g$-valued functions
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 205-230
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work we consider infinite-dimensional Lie-algebra $W_n\ltimes\mathbf g\otimes\mathcal O_n$ of formal vector fields on $n$-dimensional plane, extended by formal $\mathbf g$-valued functions of $n$ variables. Here $\mathbf g$ is an arbitrary Lie algebra. We show that the cochain complex of this Lie algebra is quasi-isomorphic to the quotient of Weyl algebra of $(\mathbf{gl}_n\oplus\mathbf g)$ by $(2n+1)$-st term of standard filtration. We consider separately the case of reductive Lie algebra $\mathbf g$. We show how one can use the methods of formal geometry, to construct characteristic classes of bundles. For every
$\mathbf G$-bundle on $n$-dimensional complex manifold we construct a natural
homomorphism from ring $A$ of relative cohomologies of Lie algebra $W_n\ltimes \mathbf g\otimes\mathcal O_n$ to ring of tohomologies of the manifold. We show that generators of ring
$A$ mapped under this homomorphism to characteristic classes of tangent and $\mathbf G$-bundles.
@article{ZNSL_2006_335_a10,
author = {A. S. Khoroshkin},
title = {Lie algebra of formal vector fields extended by formal $\mathbf g$-valued functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {205--230},
publisher = {mathdoc},
volume = {335},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a10/}
}
TY - JOUR AU - A. S. Khoroshkin TI - Lie algebra of formal vector fields extended by formal $\mathbf g$-valued functions JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 205 EP - 230 VL - 335 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a10/ LA - ru ID - ZNSL_2006_335_a10 ER -
A. S. Khoroshkin. Lie algebra of formal vector fields extended by formal $\mathbf g$-valued functions. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 205-230. http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a10/