Dynamical $CP$-violation in quasilocal quark models at nonzero chemical potential
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 5-21
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Quasilocal Quark Model of Nambu–Jona–Lasinio type as effective theory of non-perturbative QCD with scalar-pseudoscalar four-quark interaction with derivatives in fields at finite quark chemical potential. In the presence of a strong attraction in the scalar channel the chiral symmetry is spontaneously broken and as a consequence the composite meson states are generated. For special configurations of coupling constants, the dynamical CP-violation in the pseudoscalar sector can appear as a result of complexity of dynamical mass function generated at some value of quark density.
@article{ZNSL_2006_335_a0,
author = {A. A. Andrianov and V. A. Andrianov and S. S. Afonin},
title = {Dynamical $CP$-violation in quasilocal quark models at nonzero chemical potential},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--21},
publisher = {mathdoc},
volume = {335},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a0/}
}
TY - JOUR AU - A. A. Andrianov AU - V. A. Andrianov AU - S. S. Afonin TI - Dynamical $CP$-violation in quasilocal quark models at nonzero chemical potential JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 5 EP - 21 VL - 335 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a0/ LA - ru ID - ZNSL_2006_335_a0 ER -
%0 Journal Article %A A. A. Andrianov %A V. A. Andrianov %A S. S. Afonin %T Dynamical $CP$-violation in quasilocal quark models at nonzero chemical potential %J Zapiski Nauchnykh Seminarov POMI %D 2006 %P 5-21 %V 335 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a0/ %G ru %F ZNSL_2006_335_a0
A. A. Andrianov; V. A. Andrianov; S. S. Afonin. Dynamical $CP$-violation in quasilocal quark models at nonzero chemical potential. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 19, Tome 335 (2006), pp. 5-21. http://geodesic.mathdoc.fr/item/ZNSL_2006_335_a0/