On the coneigenvalues and singular values of a complex square matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 111-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is shown that the coneigenvalues of a matrix, when properly defined (in a way different from the one commonly used in the literature), obey relations similar to the classical inequalities between the (ordinary) eigenvalues and singular values. Several interesting spectral properties of conjugate-normal matrices are indicated. This matrix class plays the same role in the theory of unitary congruences as the class of normal matrices plays in the theory of unitary similarities.
@article{ZNSL_2006_334_a7,
     author = {Kh. D. Ikramov},
     title = {On the coneigenvalues and singular values of a~complex square matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {111--120},
     year = {2006},
     volume = {334},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a7/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - On the coneigenvalues and singular values of a complex square matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 111
EP  - 120
VL  - 334
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a7/
LA  - ru
ID  - ZNSL_2006_334_a7
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T On the coneigenvalues and singular values of a complex square matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 111-120
%V 334
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a7/
%G ru
%F ZNSL_2006_334_a7
Kh. D. Ikramov. On the coneigenvalues and singular values of a complex square matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 111-120. http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a7/

[1] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR

[2] M. Markus, Kh. Mink, Obzor po teorii matrits i matrichnykh neravenstv, Mir, M., 1972

[3] M. Vujicić, F. Herbut, G. Vujicić, “Canonical forms for matrices under unitary congruence transformations. I: Conjugate-normal matrices”, SIAM J. Appl. Math., 23 (1972), 225–238 | DOI | MR | Zbl

[4] E. P. Wigner, “Normal form of antiunitary operators”, J. Math. Phys., 1 (1960), 409–413 | DOI | MR | Zbl

[5] Kh. D. Ikramov, “Neravenstvo Shura dlya psevdosobstvennykh znachenii i sopryazhenno-normalnye matritsy”, Vestn. MGU. Seriya “Vychisl. matematika i kibernetika”, 1997, no. 1, 3–6 | MR