On the coneigenvalues and singular values of a~complex square matrix
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 111-120
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that the coneigenvalues of a matrix, when properly defined (in a way different from the one commonly used in the literature), obey relations  similar to the classical inequalities between the (ordinary) eigenvalues and singular values. Several interesting spectral properties of conjugate-normal matrices are indicated. This matrix class plays the same role in the theory of unitary congruences as the  class of normal matrices plays in the theory of unitary similarities.
			
            
            
            
          
        
      @article{ZNSL_2006_334_a7,
     author = {Kh. D. Ikramov},
     title = {On the coneigenvalues and singular values of a~complex square matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {111--120},
     publisher = {mathdoc},
     volume = {334},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a7/}
}
                      
                      
                    Kh. D. Ikramov. On the coneigenvalues and singular values of a~complex square matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 111-120. http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a7/