Local wavelet basis for an irregular grid
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 84-110
Cet article a éte moissonné depuis la source Math-Net.Ru
The spaces of $\mathcal B_\varphi$-splines are proved to be embedded for an arbitrary grid refinement; the direct (wavelet) decomposition for chains of embedded spaces of $\mathcal B_\varphi$-splines on a sequence of refined irregular grids is discussed; a wavelet basis of functions with compact supports is constructed; formulas of decomposition and reconstruction are provided. Simple solutions of certain interpolation problems in the spaces considered are suggested. Examples of the spline spaces are presented.
@article{ZNSL_2006_334_a6,
author = {Yu. K. Dem'yanovich},
title = {Local wavelet basis for an irregular grid},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {84--110},
year = {2006},
volume = {334},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a6/}
}
Yu. K. Dem'yanovich. Local wavelet basis for an irregular grid. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 84-110. http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a6/
[1] M. D. Buhmann, “Multiquadratic prewavelets on nonequally spaced knots in one dimension”, Math. Comput., 64 (1995), 1611–1625 | DOI | MR | Zbl
[2] I. Ya. Novikov, S. B. Stechkin, “Osnovy teorii vspleskov”, Uspekhi mat. nauk, 53 (1998), 53–128 | MR | Zbl
[3] S. Malla, Veivlety v obrabotke signalov, Mir, M., 2005
[4] Yu. K. Demyanovich, “O vlozhennosti prostranstv minimalnykh splainov”, Zh. vychisl. matem. matem. fiz., 40 (2000), 1012–1029 | MR
[5] I. G. Burova, Yu. K. Demyanovich, “O splainakh maksimalnoi gladkosti”, Vestnik Sankt-Peterb. univ. Ser. 1, 2004, no. 4, 3–11 | MR
[6] Yu. K. Demyanovich, “Vlozhennye prostranstva trigonometricheskikh splainov i ikh vspleskovoe razlozhenie”, Matem. zametki, 78:5 (2005), 658–675 | MR