Local wavelet basis for an irregular grid
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 84-110
Voir la notice de l'article provenant de la source Math-Net.Ru
The spaces of $\mathcal B_\varphi$-splines are proved to be embedded for an arbitrary grid refinement; the direct (wavelet) decomposition for chains of embedded spaces of $\mathcal B_\varphi$-splines on a sequence of refined irregular grids is discussed; a wavelet basis of functions with compact supports is constructed; formulas of decomposition and reconstruction are provided. Simple solutions of certain interpolation problems in the spaces considered are suggested. Examples of the spline spaces are presented.
@article{ZNSL_2006_334_a6,
author = {Yu. K. Dem'yanovich},
title = {Local wavelet basis for an irregular grid},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {84--110},
publisher = {mathdoc},
volume = {334},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a6/}
}
Yu. K. Dem'yanovich. Local wavelet basis for an irregular grid. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 84-110. http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a6/