On rank-one corrections of complex symmetric matrices
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 78-83
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let a matrix $A\in M_n(\mathbf C)$ be a rank-one perturbation of a complex symmetric matrix, i.e. $A=X+Y$ for some unknown matrices $X$ and $Y$ such that $X=X^T$ and $\mathrm{rank}\,Y=1$. The problem of determining the matrices $X$ and $Y$ is solved.
			
            
            
            
          
        
      @article{ZNSL_2006_334_a5,
     author = {M. Dana and Kh. D. Ikramov},
     title = {On rank-one corrections of complex symmetric matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {78--83},
     publisher = {mathdoc},
     volume = {334},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a5/}
}
                      
                      
                    M. Dana; Kh. D. Ikramov. On rank-one corrections of complex symmetric matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 78-83. http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a5/