@article{ZNSL_2006_334_a2,
author = {Yu. A. Alpin and L. Yu. Kolotilina and N. N. Korneeva},
title = {Joint bounds for the {Perron} roots of nonnegative matrices with applications},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {30--56},
year = {2006},
volume = {334},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a2/}
}
TY - JOUR AU - Yu. A. Alpin AU - L. Yu. Kolotilina AU - N. N. Korneeva TI - Joint bounds for the Perron roots of nonnegative matrices with applications JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 30 EP - 56 VL - 334 UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a2/ LA - ru ID - ZNSL_2006_334_a2 ER -
Yu. A. Alpin; L. Yu. Kolotilina; N. N. Korneeva. Joint bounds for the Perron roots of nonnegative matrices with applications. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 30-56. http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a2/
[1] Yu. A. Alpin, “Granitsy dlya perronova kornya neotritsatelnoi matritsy, uchityvayuschie svoistva ee grafa”, Matem. zametki, 58 (1995), 635–637 | MR
[2] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR
[3] L. Yu. Kolotilina, “Otsenki i neravenstva dlya perronovskogo kornya neotritsatelnoi matritsy”, Zap. nauchn. semin. POMI, 284, 2002, 77–122 | MR | Zbl
[4] L. Yu. Kolotilina, “Otsenki i neravenstva dlya perronovskogo kornya neotritsatelnoi matritsy, II”, Zap. nauchn. semin. POMI, 296, 2003, 60–88 | MR | Zbl
[5] V. P. Chistyakov, “K otsenke perronova kornya neotritsatelnykh matrits”, Dokl. AN SSSR, 246 (1979), 548–550 | MR | Zbl
[6] M. A. Berger, Y. Wang, “Bounded semigroups of matrices”, Linear Algebra Appl., 166 (1992), 21–27 | DOI | MR | Zbl
[7] V. D. Blondel, Yu. Nesterov, “Computationally efficient approximations of the joint spectral radius”, SIAM J. Matrix Anal. Appl., 27 (2005), 256–272 | DOI | MR | Zbl
[8] V. D. Blondel, Yu. Nesterov, J. Theys, “Computing the joint spectral radius of a set of matrices”, Proceedings of the 23rd Benelux Meeting on Systems and Control, Helvoirt, The Netherlands, paper FrP06-3, March 17–19, 2004
[9] I. Daubechies, J. C. Lagarias, “Sets of matrices all infinite products of which converge”, Linear Algebra Appl., 162 (1992), 227–263 | DOI | MR
[10] L. Elsner, “The generalized spectral-radius theorem: An analytic-geometric proof”, Linear Algebra Appl., 220 (1995), 151–159 | DOI | MR | Zbl
[11] L. Elsner, T. Szulc, “Convex combinations of matrices – nonsingularity and Schur stability”, Proceedings of the First Workshop on Numerical Analysis and Applications (Rousse, Bulgaria, 1996), eds. L. Vulkov, J. Wasniewski, P. Yalamov, Springer-Verlag, 1997, 170–175 | MR
[12] L. Elsner, T. Szulc, “Convex combinations of matrices – nonsingularity and Schur stability characterizations”, Linear Multilinear Algebra, 44 (1998), 301–312 | DOI | MR | Zbl
[13] L. Gurwits, “Stability of discrete linear inclusion”, Linear Algebra Appl., 231 (1995), 47–85 | DOI | MR
[14] F. Harary, Graph Theory, Addison–Wesley Publ. Co., 1969 | MR | Zbl
[15] C. R. Johnson, M. J. Tsatsomeros, “Convex sets of nonsingular and P-matrices”, Linear Multilinear Algebra, 38 (1995), 233–240 | DOI | MR
[16] J. C. Lagarias, Y. Wang, “The finiteness conjecture for the generalized spectral radius of a set of matrices”, Linear Algebra Appl., 214 (1995), 17–42 | DOI | MR | Zbl
[17] G.-C. Rota, W. G. Strang, “A note on the joint spectral radius”, Nederl. Akad. Wet., Proc., Ser. A, 63 (1960), 379–381 | MR | Zbl
[18] C. B. Soh, “Schur stability of convex combinations of matrices”, Linear Algebra Appl., 128 (1990), 159–168 | DOI | MR | Zbl
[19] J. N. Tsitsiklis, V. D. Blondel, “The Lyapunov exponent and joint spectral radius of pairs of matrices are hard – when not impossible – to compute and to approximate”, Math. Control, Signals, Syst., 10 (1997), 17–42 | MR
[20] A. A. Vladimirov, L. Elsner, W.-J. Beyn, “Stability and paracontractivity of discrete linear inclusions”, Linear Algebra Appl., 312 (2000), 125–134 | DOI | MR | Zbl