Mixed boundary-value problems for singular second-order ordinary differential equations
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 246-266 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that the boundary-value problem \begin{gather*} -u''+p_0(t)u(t)+\sum^m_{k=2}q_k(t) u^{2k+1}(t)+f_0(t)\varphi(u(t))=f(t), \quad 0<t<1, \\ u(a)=0, \quad u'(b)=0, \end{gather*} has a solution, provided that the following conditions are fulfilled: \begin{gather*} |p_0(t)|(t-a)\in L(a,b), \quad f(t)\sqrt{t-a}\in L(a,b), \\ 0\le f_0(t)\sqrt{t-a}\in L(a,b), \quad 0\le q_k(t)(t-a)^{k+1}\in L(a,b), \\ -c|u|\le\varphi(u)u, \quad c>0, \\ 1-\int^b_a p^-_0(t)(t-a)\,dt>0, \end{gather*} and, for $\varphi(u)\equiv 0$, the Galerkin method converges in the norm of the space $H^1(a,b;a)$. Several theorems of a similar kind are presented.
@article{ZNSL_2006_334_a17,
     author = {M. N. Yakovlev},
     title = {Mixed boundary-value problems for singular second-order ordinary differential equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {246--266},
     year = {2006},
     volume = {334},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a17/}
}
TY  - JOUR
AU  - M. N. Yakovlev
TI  - Mixed boundary-value problems for singular second-order ordinary differential equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 246
EP  - 266
VL  - 334
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a17/
LA  - ru
ID  - ZNSL_2006_334_a17
ER  - 
%0 Journal Article
%A M. N. Yakovlev
%T Mixed boundary-value problems for singular second-order ordinary differential equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 246-266
%V 334
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a17/
%G ru
%F ZNSL_2006_334_a17
M. N. Yakovlev. Mixed boundary-value problems for singular second-order ordinary differential equations. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 246-266. http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a17/

[1] E. Lib, M. Loss, Analiz, Nauchnaya kniga, Novosibirsk, 1998

[2] M. N. Yakovlev, “Razreshimost nelineinykh uravnenii v konuse prostranstva Banakha”, Zap. nauchn. semin. POMI, 248, 1998, 225–230 | MR | Zbl

[3] M. N. Yakovlev, “Razreshimost singulyarnykh kraevykh zadach dlya obyknovennykh differentsialnykh uravnenii poryadka $2m$”, Zap. nauchn. semin. POMI, 309, 2004, 174–188 | MR | Zbl

[4] M. M. Vainberg, Variatsionnyi metod i metod monotonnykh operatorov, Nauka, M., 1972 | MR | Zbl