The first boundary-value problem for a~singular nonlinear ordinary differential equation of fourth order
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 233-245

Voir la notice de l'article provenant de la source Math-Net.Ru

The solvability of the boundary-value problem \begin{gather*} u^{(4)}-(p_1(t)u')'-(p_2(t)[u']^{2k+1})'+p_0(t)u+f_0(t)\varphi(u)+f_1(t)u^{2m+1}=f(t), \enskip 01, \\ u(0)=u'(0)=u(1)=u'(1)=0, \end{gather*} in the space $H^2_0(0,1)$ is proved under the following assumptions: $p_0(t)t^3(1-t)^3\in L(0,1)$, $p_1(t)t(1-t)\in L(0,1)$, $f(t)t^{3/2}(1-t)^{3/2}\in L(0,1)$, $0\le p_2(t)[t(1-t)]^{k+1}\in L(0,1)$, $0\le f_0(t)[t(1-t)]^{3/2}\in L(0,1)$, $0\le f_1(t)[t(1-t)]^{3m+3}\in L(0,1)$, $\varphi(u)u\ge-c|u|$, $c>0$, $$ 1-\int^1_0p^-_1(t)t(1-t)dt-\frac13\int^1_0p^-_0(t)t^3(1-t)^3\,dt>0. $$
@article{ZNSL_2006_334_a16,
     author = {M. N. Yakovlev},
     title = {The first boundary-value problem for a~singular nonlinear ordinary differential equation of fourth order},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {233--245},
     publisher = {mathdoc},
     volume = {334},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a16/}
}
TY  - JOUR
AU  - M. N. Yakovlev
TI  - The first boundary-value problem for a~singular nonlinear ordinary differential equation of fourth order
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 233
EP  - 245
VL  - 334
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a16/
LA  - ru
ID  - ZNSL_2006_334_a16
ER  - 
%0 Journal Article
%A M. N. Yakovlev
%T The first boundary-value problem for a~singular nonlinear ordinary differential equation of fourth order
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 233-245
%V 334
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a16/
%G ru
%F ZNSL_2006_334_a16
M. N. Yakovlev. The first boundary-value problem for a~singular nonlinear ordinary differential equation of fourth order. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 233-245. http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a16/