The first boundary-value problem for a~singular nonlinear ordinary differential equation of fourth order
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 233-245
Voir la notice de l'article provenant de la source Math-Net.Ru
The solvability of the boundary-value problem
\begin{gather*}
u^{(4)}-(p_1(t)u')'-(p_2(t)[u']^{2k+1})'+p_0(t)u+f_0(t)\varphi(u)+f_1(t)u^{2m+1}=f(t), \enskip 01,
\\
u(0)=u'(0)=u(1)=u'(1)=0,
\end{gather*}
in the space $H^2_0(0,1)$ is proved under the following assumptions:
$p_0(t)t^3(1-t)^3\in L(0,1)$, $p_1(t)t(1-t)\in L(0,1)$,
$f(t)t^{3/2}(1-t)^{3/2}\in L(0,1)$, $0\le p_2(t)[t(1-t)]^{k+1}\in L(0,1)$,
$0\le f_0(t)[t(1-t)]^{3/2}\in L(0,1)$, $0\le f_1(t)[t(1-t)]^{3m+3}\in L(0,1)$,
$\varphi(u)u\ge-c|u|$, $c>0$,
$$
1-\int^1_0p^-_1(t)t(1-t)dt-\frac13\int^1_0p^-_0(t)t^3(1-t)^3\,dt>0.
$$
@article{ZNSL_2006_334_a16,
author = {M. N. Yakovlev},
title = {The first boundary-value problem for a~singular nonlinear ordinary differential equation of fourth order},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {233--245},
publisher = {mathdoc},
volume = {334},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a16/}
}
TY - JOUR AU - M. N. Yakovlev TI - The first boundary-value problem for a~singular nonlinear ordinary differential equation of fourth order JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 233 EP - 245 VL - 334 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a16/ LA - ru ID - ZNSL_2006_334_a16 ER -
M. N. Yakovlev. The first boundary-value problem for a~singular nonlinear ordinary differential equation of fourth order. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 233-245. http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a16/