An estimate of the round-off error in the elimination problem
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 193-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper demonstrates that in computing a linear form $(g,x)$ of the solution of a system of linear equations $Ax=f$, the round-off error depends on the quantities $\|A^{-1}f\|$ and $\|A^{T^{-1}}g\|$ rather than on the condition number of the coefficient matrix $A$. Estimates of the inherent and round-off errors in solving the above problem by the orthogonalization method are provided. Numerical results confirming theoretical conclusions are presented.
@article{ZNSL_2006_334_a13,
     author = {A. O. Rodnikov and B. A. Samokish},
     title = {An estimate of the round-off error in the elimination problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {193--211},
     year = {2006},
     volume = {334},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a13/}
}
TY  - JOUR
AU  - A. O. Rodnikov
AU  - B. A. Samokish
TI  - An estimate of the round-off error in the elimination problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 193
EP  - 211
VL  - 334
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a13/
LA  - ru
ID  - ZNSL_2006_334_a13
ER  - 
%0 Journal Article
%A A. O. Rodnikov
%A B. A. Samokish
%T An estimate of the round-off error in the elimination problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 193-211
%V 334
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a13/
%G ru
%F ZNSL_2006_334_a13
A. O. Rodnikov; B. A. Samokish. An estimate of the round-off error in the elimination problem. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 193-211. http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a13/

[1] D. K. Faddeev, V. N. Faddeeva, Vychislitelnye metody lineinoi algebry, Izdanie 3-e, Izd. Lan, SPb., 2002

[2] A. A. Abramov, “Ob odnom metode isklyucheniya v lineinykh zadachakh”, Zh. vychisl. matem. i matem. fiz., 20 (1980), 226–230 | MR | Zbl

[3] A. A. Abramov, V. O. Belash, “Ob odnom metode isklyucheniya dlya lineinykh zadach”, Zh. vychisl. matem. i matem. fiz., 35 (1995), 499–510 | MR | Zbl

[4] A. A. Abramov, “O skhodimosti odnogo metoda isklyucheniya”, Zh. vychisl. matem. i matem. fiz., 38 (1998), 355–364 | MR | Zbl

[5] A. A. Abramov, V. I. Ulyanova, L. F. Yukhno, “O realizatsii odnogo metoda isklyucheniya v lineinykh zadachakh s netochno zadannymi iskhodnymi dannymi”, Zh. vychisl. matem. i matem. fiz., 44 (2004), 640–649 | MR | Zbl

[6] L. F. Yukhno, “Ob odnoi modifikatsii metoda sopryazhennykh gradientov”, Zh. vychisl. matem. i matem. fiz., 46 (2006), 7–11 | MR | Zbl

[7] Y. Cao, L. Petzold, “A subspace error estimate for linear systems”, SIAM J. Matrix Anal. Appl., 24 (2003), 787–801 | DOI | MR | Zbl

[8] Dzh. Golub, Ch. Van Loun, Matrichnye vychisleniya, Mir, M., 1999