The generalized monotonicity property of the Perron root
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 13-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper presents a new monotonicity property of the Perron root of a nonnegative matrix. It is shown that this new property implies known monotonicity properties and also the Chistyakov two-sided bounds for the Peroon root of a block-partitioned nonnegative matrix. Moreover, based on the monotonicity property suggested, the equality cases in Chistyakov's theorem are analyzed. Applications to bounding above the spectral radius of a complex matrix are presented.
@article{ZNSL_2006_334_a1,
     author = {Yu. A. Alpin and L. Yu. Kolotilina},
     title = {The generalized monotonicity property of the {Perron} root},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {13--29},
     year = {2006},
     volume = {334},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a1/}
}
TY  - JOUR
AU  - Yu. A. Alpin
AU  - L. Yu. Kolotilina
TI  - The generalized monotonicity property of the Perron root
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 13
EP  - 29
VL  - 334
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a1/
LA  - ru
ID  - ZNSL_2006_334_a1
ER  - 
%0 Journal Article
%A Yu. A. Alpin
%A L. Yu. Kolotilina
%T The generalized monotonicity property of the Perron root
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 13-29
%V 334
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a1/
%G ru
%F ZNSL_2006_334_a1
Yu. A. Alpin; L. Yu. Kolotilina. The generalized monotonicity property of the Perron root. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 13-29. http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a1/

[1] Yu. A. Alpin, “Granitsy dlya perronova kornya neotritsatelnoi matritsy, uchityvayuschie svoistva ee grafa”, Matem. zametki, 58 (1995), 635–637 | MR

[2] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR

[3] Yu. A. Alpin, L. Yu. Kolotilina, N. N. Korneeva, “Sovmestnye otsenki dlya perronovskikh kornei neotritsatelnykh matrits i ikh prilozheniya”, Zap. nauchn. semin. POMI, 334, 2006, 30–56 | MR

[4] V. P. Chistyakov, “K otsenke perronova kornya neotritsatelnykh matrits”, Dokl. AN SSSR, 246 (1979), 548–550 | MR | Zbl

[5] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York etc., 1979 | MR | Zbl

[6] M. Fiedler, V. Pták, “Cyclic products and an inequality for determinants”, Czechoslovak Math. J., 19 (1969), 428–450 | MR

[7] L. Yu. Kolotilina, “Nonsingularity/singularity criteria for block diagonally dominant matrices”, Linear Algebra Appl., 359 (2003), 133–159 | DOI | MR | Zbl

[8] A. M. Ostrowski, “On some metrical properties of operator matrices and matrices partitioned into blocks”, J. Math. Anal. Appl., 2 (1961), 161–209 | DOI | MR | Zbl

[9] F. Robert, “Recherche d'une M-matrice parmi les minorantes d'un opérateur linéaire”, Numer. Math., 9 (1966), 189–199 | DOI | MR | Zbl