Uniform polynomial approximations on convex domains in $\mathbb C^n$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 98-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to a description of a new class of convex domains in $\mathbb C^n$ such that an analog of a classical Jackson–Bernstein theorem is valid for them.
@article{ZNSL_2006_333_a8,
     author = {N. A. Shirokov},
     title = {Uniform polynomial approximations on convex domains in~$\mathbb C^n$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {98--112},
     year = {2006},
     volume = {333},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a8/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - Uniform polynomial approximations on convex domains in $\mathbb C^n$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 98
EP  - 112
VL  - 333
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a8/
LA  - ru
ID  - ZNSL_2006_333_a8
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T Uniform polynomial approximations on convex domains in $\mathbb C^n$
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 98-112
%V 333
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a8/
%G ru
%F ZNSL_2006_333_a8
N. A. Shirokov. Uniform polynomial approximations on convex domains in $\mathbb C^n$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 98-112. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a8/

[1] N. A. Shirokov, “Pryamaya teorema o strogo vypukloi oblasti v $\mathbb{C}^n$”, Zap. nauchn. semin. POMI, 206, 1993, 151–173 | MR

[2] N. A. Shirokov, “Jackson–Bernstein theorem in strictly pseudoconvex domains in $\mathbb{C}^n$”, Constr. Appr., 1989, no. 4, 455–461 | DOI | MR | Zbl

[3] L. A. Aizenberg, “Integralnoe predstavlenie funktsii, golomorfnykh v vypuklykh oblastyakh prostranstva $\mathbb{C}^n$”, DAN SSSR, 151:6 (1963), 1247–1249 | MR | Zbl

[4] E. M. Dynkin, “Gladkie funktsii na ploskikh mnozhestvakh”, DAN SSSR, 208:1 (1973), 25–27 | MR

[5] I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[6] G. M. Henkin, J. Leiterer, Theory of functions on complex manifolds, Akademic-Verlag, Berlin, 1984 | MR | Zbl

[7] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl