Uniform polynomial approximations on convex domains in~$\mathbb C^n$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 98-112
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to a description of a new class of convex domains in $\mathbb C^n$ such that an analog of a classical Jackson–Bernstein theorem is valid for them.
@article{ZNSL_2006_333_a8,
author = {N. A. Shirokov},
title = {Uniform polynomial approximations on convex domains in~$\mathbb C^n$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {98--112},
publisher = {mathdoc},
volume = {333},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a8/}
}
N. A. Shirokov. Uniform polynomial approximations on convex domains in~$\mathbb C^n$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 98-112. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a8/