Uniform polynomial approximations on convex domains in~$\mathbb C^n$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 98-112

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to a description of a new class of convex domains in $\mathbb C^n$ such that an analog of a classical Jackson–Bernstein theorem is valid for them.
@article{ZNSL_2006_333_a8,
     author = {N. A. Shirokov},
     title = {Uniform polynomial approximations on convex domains in~$\mathbb C^n$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {98--112},
     publisher = {mathdoc},
     volume = {333},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a8/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - Uniform polynomial approximations on convex domains in~$\mathbb C^n$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 98
EP  - 112
VL  - 333
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a8/
LA  - ru
ID  - ZNSL_2006_333_a8
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T Uniform polynomial approximations on convex domains in~$\mathbb C^n$
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 98-112
%V 333
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a8/
%G ru
%F ZNSL_2006_333_a8
N. A. Shirokov. Uniform polynomial approximations on convex domains in~$\mathbb C^n$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 98-112. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a8/