Sharp weighted inequality for a multilinear commutator of the Marcinkiewicz operator
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 86-97
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A sharp inequality for a multilinear commutator related to the Marcinkiewicz operator is proved. As a consequence, a weighted $L^p$-norm inequality for the multilinear commutator for $1 is obtained.
@article{ZNSL_2006_333_a7,
     author = {Qiaozhen Zhao and L. Lanzhe},
     title = {Sharp weighted inequality for a~multilinear commutator of the {Marcinkiewicz} operator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {86--97},
     year = {2006},
     volume = {333},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a7/}
}
TY  - JOUR
AU  - Qiaozhen Zhao
AU  - L. Lanzhe
TI  - Sharp weighted inequality for a multilinear commutator of the Marcinkiewicz operator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 86
EP  - 97
VL  - 333
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a7/
LA  - en
ID  - ZNSL_2006_333_a7
ER  - 
%0 Journal Article
%A Qiaozhen Zhao
%A L. Lanzhe
%T Sharp weighted inequality for a multilinear commutator of the Marcinkiewicz operator
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 86-97
%V 333
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a7/
%G en
%F ZNSL_2006_333_a7
Qiaozhen Zhao; L. Lanzhe. Sharp weighted inequality for a multilinear commutator of the Marcinkiewicz operator. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 86-97. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a7/

[1] J. Alvarez, R. J. Babgy, D. S. Kurtz, C. Pérez, “Weighted estimates for commutators of linear operators”, Studia Math., 104 (1993), 195–209 | MR | Zbl

[2] R. Coifman, Y. Meyer, Wavelets. Calderón–Zygmund and multilinear operators, Cambridge Studies in Advanced Math., 48, Camridge University Press, Cambridge, 1997 | MR | Zbl

[3] R. Coifman, R. Rochberg, G. Weiss, “Factorization theorems for Hardy spaces in several variables”, Ann. of Math., 103 (1976), 611–635 | DOI | MR | Zbl

[4] Y. Ding, S. Z. Lu, Q. Xue, “On Marcinkiewicz integral with homogeneous kernels”, J. Math. Anal. Appl., 245 (2000), 471–488 | DOI | MR | Zbl

[5] J. Garcia-Cuerva, J. L. Rubio de Francia, Weighted norm inequalities and related topics, 116, North-Holland Math. Studies, Amsterdam, 1985 | MR | Zbl

[6] L. Z. Liu, “The continuity of commutators on Triebel–Lizorkin spaces”, Integral Equations and Operator Theory, 49:1 (2004), 65–76 | DOI | MR

[7] L. Z. Liu, B. S. Wu, “Weighted boundedness for commutator of Marcinkiewicz integral on some Hardy spaces”, Southeast Asian Bull. of Math., 28 (2005), 643–650 | MR

[8] C. Pérez, “Endpoint estimate for commutators of singular integral operators”, J. Func. Anal., 128 (1995), 163–185 | DOI | MR | Zbl

[9] C. Pérez, G. Pradolini, “Sharp weighted endpoint estimates for commutators of singular integral operators”, Michigan Math. J., 49 (2001), 23–37 | DOI | MR | Zbl

[10] C. Pérez, R. Trujillo-Gonzalez, “Sharp weighted estimates for multilinear commutators”, J. London Math. Soc., 65 (2002), 672–692 | DOI | MR | Zbl

[11] E. M. Stein, Harmonic analysis: real variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton NJ, 1993 | MR | Zbl

[12] A. Torchinsky, S. Wang, “A note on the Marcinkiewicz integral”, Colloq. Math., 60–61 (1990), 235–243 | MR | Zbl