Integration of differential forms on manifolds with locally finite variations. Part II
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 66-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the part I of the paper the $n$-dimensional $C^0$-manifolds in $\mathbb R^n$ $(m\ge n)$ with locally finite $n$-dimensional variations (a generalization of locally rectifiable curves to dimension $n>1$) and integration of measurable differential $n$-forms over such manifolds were defined. The main result of part II states that an $n$-dimensional manifold $C^1$-embedded in $\mathbb R^m$ has locally finite variations and the integral of measurable differential $n$-form defined in part I can be calculated by well-known formula.
@article{ZNSL_2006_333_a6,
     author = {A. V. Potepun},
     title = {Integration of differential forms on manifolds with locally finite variations. {Part~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {66--85},
     year = {2006},
     volume = {333},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a6/}
}
TY  - JOUR
AU  - A. V. Potepun
TI  - Integration of differential forms on manifolds with locally finite variations. Part II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 66
EP  - 85
VL  - 333
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a6/
LA  - ru
ID  - ZNSL_2006_333_a6
ER  - 
%0 Journal Article
%A A. V. Potepun
%T Integration of differential forms on manifolds with locally finite variations. Part II
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 66-85
%V 333
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a6/
%G ru
%F ZNSL_2006_333_a6
A. V. Potepun. Integration of differential forms on manifolds with locally finite variations. Part II. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 66-85. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a6/

[1] G. Grauert, I. Lib, V. Fisher, Differentsialnoe i integralnoe ischislenie, M., 1971

[2] B. Z. Vulikh, Kratkii kurs teorii funktsii veschestvennoi peremennoi, M., 1973

[3] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya, M., 1979 | MR

[4] N. Dinculeanu, Vector measures, Berlin, 1966 | MR

[5] A. V. Potepun, “Integrirovanie differentsialnykh form na mnogoobraziyakh s lokalno konechnymi variatsiyami, chast, I”, Zap. nauchn. semin. POMI, 327, 2005, 168–206 | MR | Zbl