Isomorphic type of the space of smooth functions determined by a finite family of differential operators. II
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 62-65
Cet article a éte moissonné depuis la source Math-Net.Ru
The space of smooth function on $\mathbb T^3$ generated by one differential expression may fail to be isomorphic to a complemented subspace of $C(K)$. For instance, this happens for the differential expression $\partial^2_1-\partial^2_2-\partial^2_3$.
@article{ZNSL_2006_333_a5,
author = {D. V. Maksimov},
title = {Isomorphic type of the space of smooth functions determined by a~finite family of differential {operators.~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {62--65},
year = {2006},
volume = {333},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a5/}
}
TY - JOUR AU - D. V. Maksimov TI - Isomorphic type of the space of smooth functions determined by a finite family of differential operators. II JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 62 EP - 65 VL - 333 UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a5/ LA - ru ID - ZNSL_2006_333_a5 ER -
D. V. Maksimov. Isomorphic type of the space of smooth functions determined by a finite family of differential operators. II. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 62-65. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a5/
[1] S. V. Kislyakov, D. V. Maksimov, “Izomorfnyi tip prostranstva gladkikh funktsii, porozhdennogo konechnym semeistvom differentsialnykh operatorov”, Zap. nauchn. semin. POMI, 327, 2005, 78–97 | MR | Zbl
[2] C. C. Graham, O. C. McGehee, Essays in commutative harmonic analysis, Springer, Berlin, 1979 | MR