Isomorphic type of the space of smooth functions determined by a~finite family of differential operators.~II
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 62-65
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The space of smooth function on $\mathbb T^3$ generated by one differential expression may fail to be isomorphic to a complemented subspace of $C(K)$. For instance, this happens for the differential expression $\partial^2_1-\partial^2_2-\partial^2_3$.
			
            
            
            
          
        
      @article{ZNSL_2006_333_a5,
     author = {D. V. Maksimov},
     title = {Isomorphic type of the space of smooth functions determined by a~finite family of differential {operators.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {62--65},
     publisher = {mathdoc},
     volume = {333},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a5/}
}
                      
                      
                    TY - JOUR AU - D. V. Maksimov TI - Isomorphic type of the space of smooth functions determined by a~finite family of differential operators.~II JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 62 EP - 65 VL - 333 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a5/ LA - ru ID - ZNSL_2006_333_a5 ER -
D. V. Maksimov. Isomorphic type of the space of smooth functions determined by a~finite family of differential operators.~II. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 62-65. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a5/