Isomorphic type of the space of smooth functions determined by a finite family of differential operators. II
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 62-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The space of smooth function on $\mathbb T^3$ generated by one differential expression may fail to be isomorphic to a complemented subspace of $C(K)$. For instance, this happens for the differential expression $\partial^2_1-\partial^2_2-\partial^2_3$.
@article{ZNSL_2006_333_a5,
     author = {D. V. Maksimov},
     title = {Isomorphic type of the space of smooth functions determined by a~finite family of differential {operators.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {62--65},
     year = {2006},
     volume = {333},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a5/}
}
TY  - JOUR
AU  - D. V. Maksimov
TI  - Isomorphic type of the space of smooth functions determined by a finite family of differential operators. II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 62
EP  - 65
VL  - 333
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a5/
LA  - ru
ID  - ZNSL_2006_333_a5
ER  - 
%0 Journal Article
%A D. V. Maksimov
%T Isomorphic type of the space of smooth functions determined by a finite family of differential operators. II
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 62-65
%V 333
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a5/
%G ru
%F ZNSL_2006_333_a5
D. V. Maksimov. Isomorphic type of the space of smooth functions determined by a finite family of differential operators. II. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 62-65. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a5/

[1] S. V. Kislyakov, D. V. Maksimov, “Izomorfnyi tip prostranstva gladkikh funktsii, porozhdennogo konechnym semeistvom differentsialnykh operatorov”, Zap. nauchn. semin. POMI, 327, 2005, 78–97 | MR | Zbl

[2] C. C. Graham, O. C. McGehee, Essays in commutative harmonic analysis, Springer, Berlin, 1979 | MR