Commutators in model spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 54-61
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\theta$ be an inner function, let $K_\theta=H^2\ominus\theta H^2$, and let $S_\theta\colon K_\theta\to K_\theta$ be defined by the formula $S_\theta f=P_\theta zf$, $f\in K_\theta$, where $P_\theta$ is the orthogonal projection of $H^2$ onto $K_\theta$. Consider the set $A$ of all trace class operators $L\colon K_\theta\to K_\theta$, $L=\sum(\cdot,u_n)v_n$, $\sum\|u_n\|\|v_n\|<\infty$ $(u_n,v_n\in K_\theta)$, such that $\sum\bar u_nv_n\in H^1_0$. It is shown that the trace class commutators of the form $XS_\theta-S_\theta X$ (where $X$ is a bounded linear operator on $K_\theta$) are dense in $A$ in the trace class norm.
@article{ZNSL_2006_333_a4,
author = {V. V. Kapustin},
title = {Commutators in model spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {54--61},
year = {2006},
volume = {333},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a4/}
}
V. V. Kapustin. Commutators in model spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 54-61. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a4/
[1] V. V. Peller, “Operatory Gankelya v teorii vozmuschenii unitarnykh i samosopryazhennykh operatorov”, Funktsionalnyi analiz i ego prilozheniya, 19:2 (1985), 37–51 | MR | Zbl
[2] M. Sh. Birman, M. Z. Solomyak, “Double operator integrals in a Hilbert space”, Integral Equations Operator Theory, 47:2 (2003) | DOI | MR | Zbl