Commutators in model spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 54-61

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\theta$ be an inner function, let $K_\theta=H^2\ominus\theta H^2$, and let $S_\theta\colon K_\theta\to K_\theta$ be defined by the formula $S_\theta f=P_\theta zf$, $f\in K_\theta$, where $P_\theta$ is the orthogonal projection of $H^2$ onto $K_\theta$. Consider the set $A$ of all trace class operators $L\colon K_\theta\to K_\theta$, $L=\sum(\cdot,u_n)v_n$, $\sum\|u_n\|\|v_n\|\infty$ $(u_n,v_n\in K_\theta)$, such that $\sum\bar u_nv_n\in H^1_0$. It is shown that the trace class commutators of the form $XS_\theta-S_\theta X$ (where $X$ is a bounded linear operator on $K_\theta$) are dense in $A$ in the trace class norm.
@article{ZNSL_2006_333_a4,
     author = {V. V. Kapustin},
     title = {Commutators in model spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--61},
     publisher = {mathdoc},
     volume = {333},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a4/}
}
TY  - JOUR
AU  - V. V. Kapustin
TI  - Commutators in model spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 54
EP  - 61
VL  - 333
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a4/
LA  - ru
ID  - ZNSL_2006_333_a4
ER  - 
%0 Journal Article
%A V. V. Kapustin
%T Commutators in model spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 54-61
%V 333
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a4/
%G ru
%F ZNSL_2006_333_a4
V. V. Kapustin. Commutators in model spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 54-61. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a4/