Characterizations of Hardy--Orlicz and Bergman--Orlicz spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 43-53
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\widetilde\nabla$ и $\tau$ denote the invariant gradient and invariant measure on the unit ball $B$ of $\mathbb C^n$, respectively. Assume that $f$ is a holomorphic function on $B$ and $\varphi\in C^2 ({\mathbb R})$ is a nonnegative nondecreasing convex function. Then $f$ is in the Hardy–Orlicz space $H_\varphi(B)$ if and only if
$$
\int_B\varphi''(\log|f(z)|)\frac{|\widetilde\nabla f(z)|^2}{|f(z)|^2}(1-|z|^2)^n\,d\tau(z)\infty.
$$
Analogous characterizations of Bergman–Orlicz spaces are obtained.
@article{ZNSL_2006_333_a3,
author = {E. Doubtsov},
title = {Characterizations of {Hardy--Orlicz} and {Bergman--Orlicz} spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {43--53},
publisher = {mathdoc},
volume = {333},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a3/}
}
E. Doubtsov. Characterizations of Hardy--Orlicz and Bergman--Orlicz spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 43-53. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a3/