Characterizations of Hardy--Orlicz and Bergman--Orlicz spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 43-53

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\widetilde\nabla$ и $\tau$ denote the invariant gradient and invariant measure on the unit ball $B$ of $\mathbb C^n$, respectively. Assume that $f$ is a holomorphic function on $B$ and $\varphi\in C^2 ({\mathbb R})$ is a nonnegative nondecreasing convex function. Then $f$ is in the Hardy–Orlicz space $H_\varphi(B)$ if and only if $$ \int_B\varphi''(\log|f(z)|)\frac{|\widetilde\nabla f(z)|^2}{|f(z)|^2}(1-|z|^2)^n\,d\tau(z)\infty. $$ Analogous characterizations of Bergman–Orlicz spaces are obtained.
@article{ZNSL_2006_333_a3,
     author = {E. Doubtsov},
     title = {Characterizations of {Hardy--Orlicz} and {Bergman--Orlicz} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {43--53},
     publisher = {mathdoc},
     volume = {333},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a3/}
}
TY  - JOUR
AU  - E. Doubtsov
TI  - Characterizations of Hardy--Orlicz and Bergman--Orlicz spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 43
EP  - 53
VL  - 333
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a3/
LA  - ru
ID  - ZNSL_2006_333_a3
ER  - 
%0 Journal Article
%A E. Doubtsov
%T Characterizations of Hardy--Orlicz and Bergman--Orlicz spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 43-53
%V 333
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a3/
%G ru
%F ZNSL_2006_333_a3
E. Doubtsov. Characterizations of Hardy--Orlicz and Bergman--Orlicz spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 43-53. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a3/