Estimation of maximal distances between spaces with norms invariant under a~group of operators
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 33-42
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the class $A_\Gamma$ of $n$-dimensional normed spaces with unit balls of the form: $B_U=\operatorname{conv}\bigcup\limits_{\gamma\in\Gamma}\gamma(B^1_n\cup U(B^1_n))$, where $B^1_n$ is the unit ball of $\ell^1_n$, $\Gamma$ is a finite group of
orthogonal operators acting in ${\mathbb R}^n$, and $U$ is a “random” orthogonal transformation.
It is proved that this class contains spaces with a large Banach–Mazur distance between them. If the cardinality of $\Gamma$ is of order $n^c$, it is shown that, in the power scale, the  diameter of $A_\Gamma$ in the modified Banach–Mazur distance behaves as the classical diameter and is of the order $n$.
			
            
            
            
          
        
      @article{ZNSL_2006_333_a2,
     author = {F. L. Bakharev},
     title = {Estimation of maximal distances between spaces with norms invariant under a~group of operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--42},
     publisher = {mathdoc},
     volume = {333},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a2/}
}
                      
                      
                    TY - JOUR AU - F. L. Bakharev TI - Estimation of maximal distances between spaces with norms invariant under a~group of operators JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 33 EP - 42 VL - 333 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a2/ LA - ru ID - ZNSL_2006_333_a2 ER -
F. L. Bakharev. Estimation of maximal distances between spaces with norms invariant under a~group of operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 33-42. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a2/