Estimation of maximal distances between spaces with norms invariant under a~group of operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 33-42

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the class $A_\Gamma$ of $n$-dimensional normed spaces with unit balls of the form: $B_U=\operatorname{conv}\bigcup\limits_{\gamma\in\Gamma}\gamma(B^1_n\cup U(B^1_n))$, where $B^1_n$ is the unit ball of $\ell^1_n$, $\Gamma$ is a finite group of orthogonal operators acting in ${\mathbb R}^n$, and $U$ is a “random” orthogonal transformation. It is proved that this class contains spaces with a large Banach–Mazur distance between them. If the cardinality of $\Gamma$ is of order $n^c$, it is shown that, in the power scale, the diameter of $A_\Gamma$ in the modified Banach–Mazur distance behaves as the classical diameter and is of the order $n$.
@article{ZNSL_2006_333_a2,
     author = {F. L. Bakharev},
     title = {Estimation of maximal distances between spaces with norms invariant under a~group of operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--42},
     publisher = {mathdoc},
     volume = {333},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a2/}
}
TY  - JOUR
AU  - F. L. Bakharev
TI  - Estimation of maximal distances between spaces with norms invariant under a~group of operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 33
EP  - 42
VL  - 333
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a2/
LA  - ru
ID  - ZNSL_2006_333_a2
ER  - 
%0 Journal Article
%A F. L. Bakharev
%T Estimation of maximal distances between spaces with norms invariant under a~group of operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 33-42
%V 333
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a2/
%G ru
%F ZNSL_2006_333_a2
F. L. Bakharev. Estimation of maximal distances between spaces with norms invariant under a~group of operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 33-42. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a2/