Generalization of some classical results to the case of the modified Banach--Mazur distance
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 17-32

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to generalization of some classical results about the Banach–Mazur distance to the modified Banach–Mazur distance. The existense of a space uniformly distant in the modified Banach–Mazur distance from all spaces with small basis constant and a space distant in the modified metric from all spaces admitting complex structure is proved. The existense of a real space admitting two complex structures distant in the sense of the complex modified distance is established. The existense of a space having big generalized volume ratio with all of its subspaces of proportional dimension is shown.
@article{ZNSL_2006_333_a1,
     author = {F. L. Bakharev},
     title = {Generalization of some classical results to the case of the  modified {Banach--Mazur} distance},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--32},
     publisher = {mathdoc},
     volume = {333},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a1/}
}
TY  - JOUR
AU  - F. L. Bakharev
TI  - Generalization of some classical results to the case of the  modified Banach--Mazur distance
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 17
EP  - 32
VL  - 333
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a1/
LA  - ru
ID  - ZNSL_2006_333_a1
ER  - 
%0 Journal Article
%A F. L. Bakharev
%T Generalization of some classical results to the case of the  modified Banach--Mazur distance
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 17-32
%V 333
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a1/
%G ru
%F ZNSL_2006_333_a1
F. L. Bakharev. Generalization of some classical results to the case of the  modified Banach--Mazur distance. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 17-32. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a1/