Generalization of some classical results to the case of the  modified Banach--Mazur distance
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 17-32
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper  is devoted to  generalization of some classical results about the  Banach–Mazur distance to the  modified Banach–Mazur distance. The existense of a space uniformly distant in  the  modified Banach–Mazur distance from all spaces with small basis constant and a space distant in the modified metric from all spaces admitting complex structure is proved. The existense of a real space  admitting two complex structures distant in the sense of the  complex modified distance is established. The existense of a space having big generalized volume ratio with all of its subspaces of proportional dimension is shown.
			
            
            
            
          
        
      @article{ZNSL_2006_333_a1,
     author = {F. L. Bakharev},
     title = {Generalization of some classical results to the case of the  modified {Banach--Mazur} distance},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--32},
     publisher = {mathdoc},
     volume = {333},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a1/}
}
                      
                      
                    TY - JOUR AU - F. L. Bakharev TI - Generalization of some classical results to the case of the modified Banach--Mazur distance JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 17 EP - 32 VL - 333 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a1/ LA - ru ID - ZNSL_2006_333_a1 ER -
F. L. Bakharev. Generalization of some classical results to the case of the modified Banach--Mazur distance. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 17-32. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a1/