Generalization of some classical results to the case of the modified Banach–Mazur distance
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 17-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to generalization of some classical results about the Banach–Mazur distance to the modified Banach–Mazur distance. The existense of a space uniformly distant in the modified Banach–Mazur distance from all spaces with small basis constant and a space distant in the modified metric from all spaces admitting complex structure is proved. The existense of a real space admitting two complex structures distant in the sense of the complex modified distance is established. The existense of a space having big generalized volume ratio with all of its subspaces of proportional dimension is shown.
@article{ZNSL_2006_333_a1,
     author = {F. L. Bakharev},
     title = {Generalization of some classical results to the case of the modified {Banach{\textendash}Mazur} distance},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--32},
     year = {2006},
     volume = {333},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a1/}
}
TY  - JOUR
AU  - F. L. Bakharev
TI  - Generalization of some classical results to the case of the modified Banach–Mazur distance
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 17
EP  - 32
VL  - 333
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a1/
LA  - ru
ID  - ZNSL_2006_333_a1
ER  - 
%0 Journal Article
%A F. L. Bakharev
%T Generalization of some classical results to the case of the modified Banach–Mazur distance
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 17-32
%V 333
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a1/
%G ru
%F ZNSL_2006_333_a1
F. L. Bakharev. Generalization of some classical results to the case of the modified Banach–Mazur distance. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 17-32. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a1/

[1] F. L. Bakharev, “Ekstremalno dalekie normirovannye prostranstva s dopolnitelnymi ogranicheniyami”, Mat. zametki, 79 (2006), 339–352 | MR | Zbl

[2] E. D. Gluskin, “Diametr kompakta Minkovskogo primerno raven $n$”, Funkts. analiz i ego pril., 15:1 (1981), 72–73 | MR | Zbl

[3] E. D. Gluskin, “Ekstremalnye svoistva ortogonalnykh parallelepipedov i ikh prilozheniya k geometrii banakhovykh prostranstv”, Mat. sb., 136(178):1(5) (1988), 85–96 | MR | Zbl

[4] E. D. Gluskin, “Konechnomernye analogi prostranstv bez bazisa”, Dokl. Akad. Nauk SSSR, 216 (1981), 72–73 | MR

[5] V. I. Gurarii, M. I. Kadets, V. I. Matsaev, “O rasstoyaniyakh mezhdu konechnomernymi analogami prostranstv $L^p$”, Mat. sb., 70(112):4 (1966), 481–489 | MR | Zbl

[6] A. I. Khrabrov, “Obobschennye ob'emnye otnosheniya i rasstoyanie Banakha–Mazura”, Mat. zametki, 70:6 (2001), 918–926 | MR | Zbl

[7] I. Bárány, Z. Füredi, “Approximation of the sphere by polytopes having few vertices”, Proc. Amer. Math. Soc., 102:3 (1988), 651–659 | DOI | MR | Zbl

[8] P. Enflo, “A counterexample to approximation problem for Banach spaces”, Acta Math., 130 (1973), 309–317 | DOI | MR | Zbl

[9] P. Mankiewicz, “Subspace mixing properties of operators in $R^n$ with applications to Gluskin spaces”, Studia Math., 88:1 (1988), 51–67 | MR | Zbl

[10] S. J. Szarek, “On the existence and uniqueness of complex stpucture and spaces with “few” operators”, Trans. Amer. Math. Soc., 293 (1986), 339–353 | DOI | MR | Zbl