@article{ZNSL_2006_333_a1,
author = {F. L. Bakharev},
title = {Generalization of some classical results to the case of the modified {Banach{\textendash}Mazur} distance},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {17--32},
year = {2006},
volume = {333},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a1/}
}
F. L. Bakharev. Generalization of some classical results to the case of the modified Banach–Mazur distance. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 17-32. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a1/
[1] F. L. Bakharev, “Ekstremalno dalekie normirovannye prostranstva s dopolnitelnymi ogranicheniyami”, Mat. zametki, 79 (2006), 339–352 | MR | Zbl
[2] E. D. Gluskin, “Diametr kompakta Minkovskogo primerno raven $n$”, Funkts. analiz i ego pril., 15:1 (1981), 72–73 | MR | Zbl
[3] E. D. Gluskin, “Ekstremalnye svoistva ortogonalnykh parallelepipedov i ikh prilozheniya k geometrii banakhovykh prostranstv”, Mat. sb., 136(178):1(5) (1988), 85–96 | MR | Zbl
[4] E. D. Gluskin, “Konechnomernye analogi prostranstv bez bazisa”, Dokl. Akad. Nauk SSSR, 216 (1981), 72–73 | MR
[5] V. I. Gurarii, M. I. Kadets, V. I. Matsaev, “O rasstoyaniyakh mezhdu konechnomernymi analogami prostranstv $L^p$”, Mat. sb., 70(112):4 (1966), 481–489 | MR | Zbl
[6] A. I. Khrabrov, “Obobschennye ob'emnye otnosheniya i rasstoyanie Banakha–Mazura”, Mat. zametki, 70:6 (2001), 918–926 | MR | Zbl
[7] I. Bárány, Z. Füredi, “Approximation of the sphere by polytopes having few vertices”, Proc. Amer. Math. Soc., 102:3 (1988), 651–659 | DOI | MR | Zbl
[8] P. Enflo, “A counterexample to approximation problem for Banach spaces”, Acta Math., 130 (1973), 309–317 | DOI | MR | Zbl
[9] P. Mankiewicz, “Subspace mixing properties of operators in $R^n$ with applications to Gluskin spaces”, Studia Math., 88:1 (1988), 51–67 | MR | Zbl
[10] S. J. Szarek, “On the existence and uniqueness of complex stpucture and spaces with “few” operators”, Trans. Amer. Math. Soc., 293 (1986), 339–353 | DOI | MR | Zbl