Strong factorization of operators defined on subspaces of analytic functions in lattices
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 5-16

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that for every 2-concave Banach lattice $X$ of measurable fuctions on the circle, the quotient space $X/X_A$ has cotype 2. Here $X_A$ denotes the subclass of $X$ consisting of the boundary values of analytic functions. It is also shown that, under slight additional assumptions, a $p$-concave operator defined on $X_A$ factors through $L^p_A=H^p$ and extends to $X$, provided that $X$ is 2-convex.
@article{ZNSL_2006_333_a0,
     author = {D. S. Anisimov and S. V. Kislyakov},
     title = {Strong factorization of operators defined on subspaces of analytic functions in lattices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {333},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a0/}
}
TY  - JOUR
AU  - D. S. Anisimov
AU  - S. V. Kislyakov
TI  - Strong factorization of operators defined on subspaces of analytic functions in lattices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 5
EP  - 16
VL  - 333
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a0/
LA  - ru
ID  - ZNSL_2006_333_a0
ER  - 
%0 Journal Article
%A D. S. Anisimov
%A S. V. Kislyakov
%T Strong factorization of operators defined on subspaces of analytic functions in lattices
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 5-16
%V 333
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a0/
%G ru
%F ZNSL_2006_333_a0
D. S. Anisimov; S. V. Kislyakov. Strong factorization of operators defined on subspaces of analytic functions in lattices. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 5-16. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a0/