Strong factorization of operators defined on subspaces of analytic functions in lattices
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 5-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is shown that for every 2-concave Banach lattice $X$ of measurable fuctions on the circle, the quotient space $X/X_A$ has cotype 2. Here $X_A$ denotes the subclass of $X$ consisting of the boundary values of analytic functions. It is also shown that, under slight additional assumptions, a $p$-concave operator defined on $X_A$ factors through $L^p_A=H^p$ and extends to $X$, provided that $X$ is 2-convex.
@article{ZNSL_2006_333_a0,
     author = {D. S. Anisimov and S. V. Kislyakov},
     title = {Strong factorization of operators defined on subspaces of analytic functions in lattices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--16},
     year = {2006},
     volume = {333},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a0/}
}
TY  - JOUR
AU  - D. S. Anisimov
AU  - S. V. Kislyakov
TI  - Strong factorization of operators defined on subspaces of analytic functions in lattices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 5
EP  - 16
VL  - 333
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a0/
LA  - ru
ID  - ZNSL_2006_333_a0
ER  - 
%0 Journal Article
%A D. S. Anisimov
%A S. V. Kislyakov
%T Strong factorization of operators defined on subspaces of analytic functions in lattices
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 5-16
%V 333
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a0/
%G ru
%F ZNSL_2006_333_a0
D. S. Anisimov; S. V. Kislyakov. Strong factorization of operators defined on subspaces of analytic functions in lattices. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 5-16. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a0/

[1] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces II. Function spaces, Springer-Verlag, 1979 | MR

[2] N. J. Kalton, “Complex interpolation of Hardy-type subspaces”, Math. Nachr., 171 (1995), 227–258 | DOI | MR | Zbl

[3] S. V. Kislyakov, “O VMO-regulyarnykh reshetkakh izmerimykh funktsii”, Algebra i analiz, 14:2 (2002), 117–135 | MR | Zbl

[4] D. S. Anisimov, “Variant teoremy Grotendika dlya podprostranstv analiticheskikh funktsii v reshetkakh”, Zap. nauchn. semin. POMI, 327, 2005, 5–16 | MR | Zbl

[5] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, Moskva, 1977 | MR | Zbl

[6] J. Bourgain, “New Banach space properties of the disc algebra and $H^{\infty}$”, Acta Math., 152 (1984), 1–48 | DOI | MR | Zbl

[7] J. Bourgain, “Bilinear forms on $H^{\infty}$ and bounded bianalytic functions”, Trans. Amer. Math. Soc., 286 (1984), 313–337 | DOI | MR | Zbl

[8] P. Wojtaszczyk, Banach spaces for analysts, Cambridge University Press, 1990 | MR

[9] S. V. Kislyakov, “Absolyutno summiruyuschie operatory na disk-algebre”, Algebra i analiz, 3:4 (1991), 1–77 | MR | Zbl

[10] T. W. Gamelin, S. V. Kislyakov, “Uniform algebras as Banach spaces”, Handbook of the geometry of Banach spaces, V. 1, Math. Nachr., 94, eds. W. B. Johnson et al., Elsevier Science B.V., Amsterdam, 2001, 671–706 | MR