Strong factorization of operators defined on subspaces of analytic functions in lattices
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 5-16
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that for every 2-concave Banach lattice $X$ of measurable fuctions on the circle, the quotient space $X/X_A$ has cotype 2. Here $X_A$ denotes the subclass of $X$ consisting of the boundary values of analytic functions. It is also shown that, under slight additional assumptions, a $p$-concave operator defined on $X_A$ factors through $L^p_A=H^p$ and
extends to $X$, provided that $X$ is 2-convex.
@article{ZNSL_2006_333_a0,
author = {D. S. Anisimov and S. V. Kislyakov},
title = {Strong factorization of operators defined on subspaces of analytic functions in lattices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--16},
publisher = {mathdoc},
volume = {333},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a0/}
}
TY - JOUR AU - D. S. Anisimov AU - S. V. Kislyakov TI - Strong factorization of operators defined on subspaces of analytic functions in lattices JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 5 EP - 16 VL - 333 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a0/ LA - ru ID - ZNSL_2006_333_a0 ER -
D. S. Anisimov; S. V. Kislyakov. Strong factorization of operators defined on subspaces of analytic functions in lattices. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 34, Tome 333 (2006), pp. 5-16. http://geodesic.mathdoc.fr/item/ZNSL_2006_333_a0/