Limiting absorbtion principle in the problem of transparent wedge
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 138-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of diffraction a plane wave by a transparent wedge is considered (the wave numbers inside the wedge and outside it are different). An absorbtion is introduced into the medium. The existence of the solution satisfying limiting absorbtion principle is proved. The existence theorem and possibility of passage to the limit are proved for respective equations.
@article{ZNSL_2006_332_a8,
     author = {N. V. Mokeeva},
     title = {Limiting absorbtion principle in the problem of transparent wedge},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {138--148},
     year = {2006},
     volume = {332},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a8/}
}
TY  - JOUR
AU  - N. V. Mokeeva
TI  - Limiting absorbtion principle in the problem of transparent wedge
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 138
EP  - 148
VL  - 332
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a8/
LA  - ru
ID  - ZNSL_2006_332_a8
ER  - 
%0 Journal Article
%A N. V. Mokeeva
%T Limiting absorbtion principle in the problem of transparent wedge
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 138-148
%V 332
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a8/
%G ru
%F ZNSL_2006_332_a8
N. V. Mokeeva. Limiting absorbtion principle in the problem of transparent wedge. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 138-148. http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a8/

[1] J.-P. Croisille, G. Lebeau, Diffraction by an immersed elastic wedge, Lecture Notes in Mathematics, 1723, Springer, 1999 | MR | Zbl

[2] N. V. Mokeeva, “Issledovanie voprosa o korrektnosti zadach difraktsii v sluchae uglovykh oblastei”, Zap. nauch. semin. POMI, 324, S.-Peterburg, 2005, 131–147 | MR | Zbl

[3] V. Kamotski, G. Lebeau, “Diffraction by an elastic wedge with stress-free boundary: existence and uniqueness”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences Lond., 462:2065 (2006), 289–317 | DOI | MR | Zbl