Conformal mappings in the problem of water-waves floating body interaction
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 123-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Uniqueness theorems are proved for the water-wave problem involving either a body intersecting the free surface at arbitrary angles or a pair of symmetric plates floating in the free surface. Proofs combine conformal mappings and the Vainberg–Maz'ya identity.
@article{ZNSL_2006_332_a7,
     author = {N. G. Kuznetsov},
     title = {Conformal mappings in the problem of water-waves floating body interaction},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {123--137},
     year = {2006},
     volume = {332},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a7/}
}
TY  - JOUR
AU  - N. G. Kuznetsov
TI  - Conformal mappings in the problem of water-waves floating body interaction
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 123
EP  - 137
VL  - 332
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a7/
LA  - ru
ID  - ZNSL_2006_332_a7
ER  - 
%0 Journal Article
%A N. G. Kuznetsov
%T Conformal mappings in the problem of water-waves floating body interaction
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 123-137
%V 332
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a7/
%G ru
%F ZNSL_2006_332_a7
N. G. Kuznetsov. Conformal mappings in the problem of water-waves floating body interaction. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 123-137. http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a7/

[1] F. Ursell, “Some unsolved and unfinished problems in the theory of waves”, Wave Asymptotics, eds. P. A. Martin, G. R. Wickham, Cambridge University Press, Cambridge, 1992, 220–244 | MR | Zbl

[2] M. McIver, “An example of non-uniqueness in the two-dimensional linear water-wave problem”, J. Fluid Mech., 315 (1996), 257–266 | DOI | MR | Zbl

[3] N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear Water Waves: A Mathematical Approach, Cambridge University Press, Cambridge, 2002 | MR

[4] V. D. Kupradze, Granichnye zadachi teorii kolebanii i integralnye uravneniya, Gostekhizdat, M.–L., 1950 | MR

[5] D. Kolton, R. Kress, Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987 | MR

[6] F. John, “On the motion of floating bodies, II”, Comm. Pure Appl. Math., 3 (1950), 45–101 | DOI | MR

[7] M. J. Simon, F. Ursell, “Uniqueness in linearized two-dimensional water-wave problems”, J. Fluid Mech., 148 (1984), 137–154 | DOI | MR | Zbl

[8] N. Kuznetsov, “Uniqueness in the water-wave problem for a vertical shell”, The Fifth Int. Conf. Math. Numer. Aspects of Wave Propagation, eds. A. Bermudez et al., SIAM, Philadelphia, 2000, 504–508 | MR | Zbl

[9] B. R. Vainberg, V. G. Mazya, “K zadache ob ustanovivshikhsya kolebaniyakh sloya zhidkosti peremennoi glubiny”, Trudy Mosk. matem. o-va., 28, 1973, 57–74 | MR | Zbl

[10] M. D. Khaskind, “Kolebaniya sistemy plastinok na poverkhnosti tyazheloi zhidkosti”, Prikl. mat. mekh., 7 (1943), 421–430 | Zbl

[11] C. M. Linton, “The finite dock problem”, Z. Angew. Math. Phys., 52 (2001), 640–656 | DOI | MR | Zbl

[12] N. Kuznetsov, “Uniqueness in the water-wave problem for bodies intersecting the free surface at arbitrary angles”, C. R. Mecanique, 332 (2004), 73–78 | DOI | Zbl

[13] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[14] P. Moon, D. E. Spencer, Field Theory Handbook, Springer-Verlag, Berlin, 1971 | MR

[15] M. McIver, “Uniqueness and trapped modes for a symmetric structure”, The 14th Int. Workshop on Water Waves and Floating Bodies, ed. R. Beck, Univ. of Michigan, Ann Arbor, 1999, 95–98

[16] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Gostekhizdat, M.-L., 1951