Conformal mappings in the problem of water-waves floating body interaction
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 123-137
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Uniqueness theorems are proved for the water-wave problem
involving either a body intersecting the free surface at arbitrary
angles or a pair of symmetric plates floating in the free surface.
Proofs combine conformal mappings and the Vainberg–Maz'ya identity.
			
            
            
            
          
        
      @article{ZNSL_2006_332_a7,
     author = {N. G. Kuznetsov},
     title = {Conformal mappings in the problem of water-waves floating body interaction},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {123--137},
     publisher = {mathdoc},
     volume = {332},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a7/}
}
                      
                      
                    N. G. Kuznetsov. Conformal mappings in the problem of water-waves floating body interaction. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 123-137. http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a7/