Conformal mappings in the problem of water-waves floating body interaction
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 123-137

Voir la notice de l'article provenant de la source Math-Net.Ru

Uniqueness theorems are proved for the water-wave problem involving either a body intersecting the free surface at arbitrary angles or a pair of symmetric plates floating in the free surface. Proofs combine conformal mappings and the Vainberg–Maz'ya identity.
@article{ZNSL_2006_332_a7,
     author = {N. G. Kuznetsov},
     title = {Conformal mappings in the problem of water-waves floating body interaction},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {123--137},
     publisher = {mathdoc},
     volume = {332},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a7/}
}
TY  - JOUR
AU  - N. G. Kuznetsov
TI  - Conformal mappings in the problem of water-waves floating body interaction
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 123
EP  - 137
VL  - 332
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a7/
LA  - ru
ID  - ZNSL_2006_332_a7
ER  - 
%0 Journal Article
%A N. G. Kuznetsov
%T Conformal mappings in the problem of water-waves floating body interaction
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 123-137
%V 332
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a7/
%G ru
%F ZNSL_2006_332_a7
N. G. Kuznetsov. Conformal mappings in the problem of water-waves floating body interaction. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 123-137. http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a7/