Waveforms in additional components of elastic bulk waves
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 90-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Additional components in elastic wavefields displacements are those which vanish in the case of a homogeneous–plane–wave propagation. For $P$–waves in a homogeneous isotropic solid, these are the transverse components. Waveforms in additional components in simple models of non–time–harmonic elastic wave propagation with plane wavefronts are analyzed. It is demonstrated that the models based on homogeneous waves with a transverse structure and inhomogeneous waves show a qualitative difference.
@article{ZNSL_2006_332_a5,
     author = {A. P. Kiselev and G. Huet and M. Deschamps},
     title = {Waveforms in additional components of elastic bulk waves},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {90--98},
     year = {2006},
     volume = {332},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a5/}
}
TY  - JOUR
AU  - A. P. Kiselev
AU  - G. Huet
AU  - M. Deschamps
TI  - Waveforms in additional components of elastic bulk waves
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 90
EP  - 98
VL  - 332
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a5/
LA  - en
ID  - ZNSL_2006_332_a5
ER  - 
%0 Journal Article
%A A. P. Kiselev
%A G. Huet
%A M. Deschamps
%T Waveforms in additional components of elastic bulk waves
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 90-98
%V 332
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a5/
%G en
%F ZNSL_2006_332_a5
A. P. Kiselev; G. Huet; M. Deschamps. Waveforms in additional components of elastic bulk waves. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 90-98. http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a5/

[1] A. S. Alekseev, V. M. Babich, B. Ya. Gel'chinski, “Ray method for calculating intensity of wave fronts”, Voprosy Dynam. Teor. Raspr. Seism. Voln., 5 (1961), 5–21

[2] A. P. Kiselev, “Extrinsic components of elastic waves”, Izv. Acad. Sci. USSR. Phys. Solid Earth, 19 (1984), 707–710

[3] V. M. Babich, A. P. Kiselev, “Non–geometrical waves – are there any? An asymptotic description of some “nongeometrical” phenomena in seismic wave propagation”, Geophys. J. Intern., 99 (1989), 412–420 | DOI

[4] L. Yu. Fradkin, A. P. Kiselev, “The two–component representations of time-harmonic elastic body waves at high- and intermediate-frequency regimes”, J. Acoust. Soc. Amer., 101 (1997), 52–65 | DOI

[5] V. C̆ervený, Seismic Ray Theory, Cambridge University Press, Cambridge, 2001 | MR

[6] N. Ya. Kirpichnikova, A. P. Kiselev, “Depolarization of elastic surface waves in a vertically inhomogeneous half-space”, Sov. Phys., 36 (1990), 173–175

[7] V. M. Babich, A. P. Kiselev, ““Nongeometrical phenomena” in propagation of elastic surface waves”, Surface Waves in Anisotropic and Laminated Bodies and Defects Detection, eds. R. V. Goldstein, G. A. Maugin, Kluwer, 2004, 119–129 | MR | Zbl

[8] A. S. Alekseev, B. G. Mikhailenko, ““Nongeometrical phenomena” in the theory of propagation of seismic waves”, Dokl. Akad. Nauk SSSR, 267 (1982), 1079–1803

[9] A. P. Kiselev, I. D. Tsvankin, “A method of comparison of exact and asymptotic wave field computations”, Geophys. J. Intern., 96:2 (1989), 253–258 | DOI | MR

[10] E. Bécache, A. P. Kiselev, “Non-stationary elastic wavefields from an apodized normal transducer. Near-field asymptotics and numerics”, Acta Acustica united with Acustica, 91:5 (2005), 822–830

[11] E. I. Galperin, Polarization Method of Seismic Exploration, D. Reidel Pulb. Co., 1984

[12] A. P. Kiselev, V. O. Yarovoy, “Diffraction, interference and depolarization of elastic waves. Polarization anomalies near a low-contrast interface”, Phys. Solid Earth, 30 (1995), 960–966

[13] A. P. Kiselev, V. O. Yarovoy, E. A. Vsemirnova, “Diffraction, interference, and depolarization of elastic waves. Caustic and penumbra”, J. Math. Sci., 127:6 (2005), 2413–2423 | DOI | MR

[14] M. Hayes, “Energy flux for trains of inhomogeneous plane waves”, Proc. Roy. Soc. London Ser. A, 370 (1980), 417–429 | DOI | Zbl

[15] O. Leroy, B. Poirée, L. Sebbag, G. Quentin, “On the reflection coefficient of acoustic beams”, Acustica, 66 (1988), 84–89

[16] B. Poirée, “Les ondes planes évanescentes dans les fluides parfaits et les solides élastiques”, J. Acoustique, 2 (1989), 205–216

[17] L. M. Brekhovskikh, O. A. Godin, Acoustics of Layered Media, Springer–Verlag, New York, 1998

[18] M. Deschamps, “Reflection and refraction of the inhomogeneous plane wave”, Acoustic Interactions with Submerged Elastic Structures, v. 5, World Scientific, Singapore, 1996, 164–206 | MR | Zbl

[19] P. Flandrin, Time–Frequency/Time–Scale Analysis, Academic Press, 1999 | MR

[20] E. Goursat, Course d'Analyse, v. 2, Paris, 1911