@article{ZNSL_2006_332_a5,
author = {A. P. Kiselev and G. Huet and M. Deschamps},
title = {Waveforms in additional components of elastic bulk waves},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {90--98},
year = {2006},
volume = {332},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a5/}
}
A. P. Kiselev; G. Huet; M. Deschamps. Waveforms in additional components of elastic bulk waves. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 90-98. http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a5/
[1] A. S. Alekseev, V. M. Babich, B. Ya. Gel'chinski, “Ray method for calculating intensity of wave fronts”, Voprosy Dynam. Teor. Raspr. Seism. Voln., 5 (1961), 5–21
[2] A. P. Kiselev, “Extrinsic components of elastic waves”, Izv. Acad. Sci. USSR. Phys. Solid Earth, 19 (1984), 707–710
[3] V. M. Babich, A. P. Kiselev, “Non–geometrical waves – are there any? An asymptotic description of some “nongeometrical” phenomena in seismic wave propagation”, Geophys. J. Intern., 99 (1989), 412–420 | DOI
[4] L. Yu. Fradkin, A. P. Kiselev, “The two–component representations of time-harmonic elastic body waves at high- and intermediate-frequency regimes”, J. Acoust. Soc. Amer., 101 (1997), 52–65 | DOI
[5] V. C̆ervený, Seismic Ray Theory, Cambridge University Press, Cambridge, 2001 | MR
[6] N. Ya. Kirpichnikova, A. P. Kiselev, “Depolarization of elastic surface waves in a vertically inhomogeneous half-space”, Sov. Phys., 36 (1990), 173–175
[7] V. M. Babich, A. P. Kiselev, ““Nongeometrical phenomena” in propagation of elastic surface waves”, Surface Waves in Anisotropic and Laminated Bodies and Defects Detection, eds. R. V. Goldstein, G. A. Maugin, Kluwer, 2004, 119–129 | MR | Zbl
[8] A. S. Alekseev, B. G. Mikhailenko, ““Nongeometrical phenomena” in the theory of propagation of seismic waves”, Dokl. Akad. Nauk SSSR, 267 (1982), 1079–1803
[9] A. P. Kiselev, I. D. Tsvankin, “A method of comparison of exact and asymptotic wave field computations”, Geophys. J. Intern., 96:2 (1989), 253–258 | DOI | MR
[10] E. Bécache, A. P. Kiselev, “Non-stationary elastic wavefields from an apodized normal transducer. Near-field asymptotics and numerics”, Acta Acustica united with Acustica, 91:5 (2005), 822–830
[11] E. I. Galperin, Polarization Method of Seismic Exploration, D. Reidel Pulb. Co., 1984
[12] A. P. Kiselev, V. O. Yarovoy, “Diffraction, interference and depolarization of elastic waves. Polarization anomalies near a low-contrast interface”, Phys. Solid Earth, 30 (1995), 960–966
[13] A. P. Kiselev, V. O. Yarovoy, E. A. Vsemirnova, “Diffraction, interference, and depolarization of elastic waves. Caustic and penumbra”, J. Math. Sci., 127:6 (2005), 2413–2423 | DOI | MR
[14] M. Hayes, “Energy flux for trains of inhomogeneous plane waves”, Proc. Roy. Soc. London Ser. A, 370 (1980), 417–429 | DOI | Zbl
[15] O. Leroy, B. Poirée, L. Sebbag, G. Quentin, “On the reflection coefficient of acoustic beams”, Acustica, 66 (1988), 84–89
[16] B. Poirée, “Les ondes planes évanescentes dans les fluides parfaits et les solides élastiques”, J. Acoustique, 2 (1989), 205–216
[17] L. M. Brekhovskikh, O. A. Godin, Acoustics of Layered Media, Springer–Verlag, New York, 1998
[18] M. Deschamps, “Reflection and refraction of the inhomogeneous plane wave”, Acoustic Interactions with Submerged Elastic Structures, v. 5, World Scientific, Singapore, 1996, 164–206 | MR | Zbl
[19] P. Flandrin, Time–Frequency/Time–Scale Analysis, Academic Press, 1999 | MR
[20] E. Goursat, Course d'Analyse, v. 2, Paris, 1911