Waveforms in additional components of elastic bulk waves
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 90-98

Voir la notice de l'article provenant de la source Math-Net.Ru

Additional components in elastic wavefields displacements are those which vanish in the case of a homogeneous–plane–wave propagation. For $P$–waves in a homogeneous isotropic solid, these are the transverse components. Waveforms in additional components in simple models of non–time–harmonic elastic wave propagation with plane wavefronts are analyzed. It is demonstrated that the models based on homogeneous waves with a transverse structure and inhomogeneous waves show a qualitative difference.
@article{ZNSL_2006_332_a5,
     author = {A. P. Kiselev and G. Huet and M. Deschamps},
     title = {Waveforms in additional components of elastic bulk waves},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {90--98},
     publisher = {mathdoc},
     volume = {332},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a5/}
}
TY  - JOUR
AU  - A. P. Kiselev
AU  - G. Huet
AU  - M. Deschamps
TI  - Waveforms in additional components of elastic bulk waves
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 90
EP  - 98
VL  - 332
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a5/
LA  - en
ID  - ZNSL_2006_332_a5
ER  - 
%0 Journal Article
%A A. P. Kiselev
%A G. Huet
%A M. Deschamps
%T Waveforms in additional components of elastic bulk waves
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 90-98
%V 332
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a5/
%G en
%F ZNSL_2006_332_a5
A. P. Kiselev; G. Huet; M. Deschamps. Waveforms in additional components of elastic bulk waves. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 90-98. http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a5/