Quasijets in anisotropic media, Finsler geometry, and Fermi coordinates
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 48-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Hamilton–Jacobi equations for the phase function of the quasijet solutions in the case of Finsler geometry are considered in the paper. This case corresponds to the physical probleom of waves propagation in anisotropic media. The wave field corresponding to the quasijet solution propagate along a geodesic. Due to that all considerations of the paper are provided in the Fermi coordinates close to the geodesic. The quadratic term of the phase function after extracting the frequency factor satisfy the covariant Riccati equation. Especially simple form for the equation is obtained for the case of Riemannian geometry. Nontrivial coefficients of the Riccati equation coincide with elements of the curvature tensor. In the case of Findsler geometry all considerations are more complicated. Nevertheless, the main role in the Riccati equations play elements of the third Kartan curvature tensor computen on the tangential elements to the geodesic.
@article{ZNSL_2006_332_a3,
     author = {A. P. Katchalov},
     title = {Quasijets in anisotropic media, {Finsler} geometry, and {Fermi} coordinates},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {48--69},
     year = {2006},
     volume = {332},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a3/}
}
TY  - JOUR
AU  - A. P. Katchalov
TI  - Quasijets in anisotropic media, Finsler geometry, and Fermi coordinates
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 48
EP  - 69
VL  - 332
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a3/
LA  - ru
ID  - ZNSL_2006_332_a3
ER  - 
%0 Journal Article
%A A. P. Katchalov
%T Quasijets in anisotropic media, Finsler geometry, and Fermi coordinates
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 48-69
%V 332
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a3/
%G ru
%F ZNSL_2006_332_a3
A. P. Katchalov. Quasijets in anisotropic media, Finsler geometry, and Fermi coordinates. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 48-69. http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a3/

[1] M. M. Popov, Summirovanie prostranstvenno-vremennykh gaussovykh puchkov v nestatsionarnykh zadachakh, Preprint LOMI P-6-86, Leningrad

[2] A. P. Katchalov, M. M. Popov, “Gaussian beam methods and theoretical seismograms”, Geophysical J., 43 (1988), 465–475 | DOI

[3] A. P. Kachalov, “Prostranstvenno-vremennye gaussovy puchki elektromagnitnykh voln”, Zap. nauchn. semin. LOMI, 186, 1990, 115–121 | MR

[4] M. I. Belishev, A. P. Kachalov, “Granichnye upravleniya i kvazifotony v zadache vosstanovleniya rimanovogo mnogoobraziya”, Zap. nauchn. semin. POMI, 203, 1992, 21–50 | MR

[5] A. Katchalov, Y. Kurylev, M. Lassas, Inverse boundary spectral problems, Chapman Hall, 2001, 290 | MR | Zbl

[6] V. M. Babich, V. E. Nomofilov, “Luchevye resheniya s kompleksnym eikonalom, sosredotochennye v okrestnosti geodezicheskoi”, Uspekhi mat. nauk, 36:4 (1981), 198–212

[7] Kh. Rund, Differentsialnaya geometriya finslerovykh prostranstv, Nauka, 1970, 504 | MR

[8] V. M. Babich, V. S. Buldyrev, Short-wavelength diffraction theory. Asymptotic Methods, Springer Series on Wave Phenomena, 4, Springer-Verlag, Berlin, 1991, 445 | MR

[9] Yu. D. Burago, V. A. Zalgaller, Vvedenie v rimanovu geometriyu, Nauka, 1994, 318 | MR | Zbl

[10] A. P. Kachalov, “Nestatsionarnye elektromagnitnye gaussovy puchki v neodnorodnoi anizotropnoi srede”, Zap. nauchn. semin. POMI, 264, 2000, 83–100 | MR | Zbl