Asymptotic expansion of boundary-layer type for flexural waves along the curved edge of a Kirchhoff–Love plate
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 286-298 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A high-frequency asymptotic expansion of boundary-layer type is constructed for flexural waves localised in the vicinity of the free edge of a Kirchhoff–Love elastic plate. Unlike in the previous works on the subject, the boundary of the plate does not have to be rectilinear. Expressions for the leading-order terms of the expansion are obtained, which are then implemented in the problem of the description of eigenmodes of an arbitrary bounded plate with smooth boundary.
@article{ZNSL_2006_332_a16,
     author = {K. D. Cherednichenko},
     title = {Asymptotic expansion of boundary-layer type for flexural waves along the curved edge of {a~Kirchhoff{\textendash}Love} plate},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {286--298},
     year = {2006},
     volume = {332},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a16/}
}
TY  - JOUR
AU  - K. D. Cherednichenko
TI  - Asymptotic expansion of boundary-layer type for flexural waves along the curved edge of a Kirchhoff–Love plate
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 286
EP  - 298
VL  - 332
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a16/
LA  - ru
ID  - ZNSL_2006_332_a16
ER  - 
%0 Journal Article
%A K. D. Cherednichenko
%T Asymptotic expansion of boundary-layer type for flexural waves along the curved edge of a Kirchhoff–Love plate
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 286-298
%V 332
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a16/
%G ru
%F ZNSL_2006_332_a16
K. D. Cherednichenko. Asymptotic expansion of boundary-layer type for flexural waves along the curved edge of a Kirchhoff–Love plate. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 286-298. http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a16/

[1] V. M. Babich, “Rasprostranenie voln Releya vdol poverkhnosti uprugogo tela proizvolnoi formy”, DAN SSSR, 137 (1961), 1263–1266

[2] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR

[3] V. M. Babich, N. Ya. Kirpichnikova, Metod pogranichnogo sloya v zadachakh difraktsii, Izd. LGU, Leningrad, 1974 | MR

[4] V. M. Babich, N. Ya. Kirpichnikova, “A new approach to the problem of the Rayleigh wave propagation along the boundary of a non-homogeneous elastic body”, Wave Motion, 40:3 (2004), 209–223 | DOI | MR | Zbl

[5] M. V. Berry, “Quantal phase factors accompanying adiabatic changes”, Proc. Roy. Soc. London A, 392 (1984), 45–57 | DOI | MR | Zbl

[6] Y. B. Fu, “Existence and uniqueness of edge waves in a generally anisotropic elastic plate”, Quart. J. Mech. Appl. Math., 56:4 (2003), 605–616 | DOI | MR | Zbl

[7] Yu. K. Konenkov, “Izgibnaya volna releevskogo tipa”, Akusticheskii zhurnal, 6 (1960), 122–123 | MR

[8] A. N. Norris, “Flexural edge waves”, J. Sound Vib., 171 (1994), 571–573 | DOI | Zbl

[9] F. Olver, Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl

[10] Dzh. V. Strett (Lord Relei), Teoriya zvuka, t. 1, Gos. izd. tekh.-teor. lit., M., 1955

[11] J. W. S. Rayleigh, “On waves propagated along the plane surface of an elastic solid”, Proc. London Math. Soc., 17 (1887), 4–11 | DOI

[12] Yu. Safarov, D. Vassiliev, The asymptotic distribution of eigenvalues of partial differential operators, Translations of Mathematical Monographs, 155, American Mathematical Society, Providence, RI, 1997 | MR

[13] S. P. Timoshenko, S. Voinovskii-Kriger, Plastinki i obolochki, Nauka, M., 1966

[14] I. Thomson, I. D. Abrahams, A. N. Norris, “On the existence of flexural edge waves on this orthotropic plates”, J. Acoust. Soc. Am., 112 (2002), 1756–1765 | DOI

[15] J. Tromp, F. A. Dahlen, “The Berry phase of a slowly varying waveguide”, Proc. Roy. Soc. London A, 437 (1992), 329–342 | DOI | MR | Zbl

[16] G. N. Vatson, Teoriya besselevykh funktsii, t. 1, IL, M., 1949