Asymptotic expansion of boundary-layer type for flexural waves along the curved edge of a~Kirchhoff--Love plate
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 286-298

Voir la notice de l'article provenant de la source Math-Net.Ru

A high-frequency asymptotic expansion of boundary-layer type is constructed for flexural waves localised in the vicinity of the free edge of a Kirchhoff–Love elastic plate. Unlike in the previous works on the subject, the boundary of the plate does not have to be rectilinear. Expressions for the leading-order terms of the expansion are obtained, which are then implemented in the problem of the description of eigenmodes of an arbitrary bounded plate with smooth boundary.
@article{ZNSL_2006_332_a16,
     author = {K. D. Cherednichenko},
     title = {Asymptotic expansion of boundary-layer type for flexural waves along the curved edge of {a~Kirchhoff--Love} plate},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {286--298},
     publisher = {mathdoc},
     volume = {332},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a16/}
}
TY  - JOUR
AU  - K. D. Cherednichenko
TI  - Asymptotic expansion of boundary-layer type for flexural waves along the curved edge of a~Kirchhoff--Love plate
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 286
EP  - 298
VL  - 332
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a16/
LA  - ru
ID  - ZNSL_2006_332_a16
ER  - 
%0 Journal Article
%A K. D. Cherednichenko
%T Asymptotic expansion of boundary-layer type for flexural waves along the curved edge of a~Kirchhoff--Love plate
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 286-298
%V 332
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a16/
%G ru
%F ZNSL_2006_332_a16
K. D. Cherednichenko. Asymptotic expansion of boundary-layer type for flexural waves along the curved edge of a~Kirchhoff--Love plate. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 286-298. http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a16/