Asymptotic expansion of boundary-layer type for flexural waves along the curved edge of a~Kirchhoff--Love plate
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 286-298
Voir la notice de l'article provenant de la source Math-Net.Ru
A high-frequency asymptotic expansion of boundary-layer type is constructed for
flexural waves localised in the vicinity of the free edge of a Kirchhoff–Love
elastic plate. Unlike in the previous works on the subject, the boundary of the
plate does not have to be rectilinear. Expressions for the leading-order terms
of the expansion are obtained, which are then implemented in the problem of the
description of eigenmodes of an arbitrary bounded plate with smooth boundary.
@article{ZNSL_2006_332_a16,
author = {K. D. Cherednichenko},
title = {Asymptotic expansion of boundary-layer type for flexural waves along the curved edge of {a~Kirchhoff--Love} plate},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {286--298},
publisher = {mathdoc},
volume = {332},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a16/}
}
TY - JOUR AU - K. D. Cherednichenko TI - Asymptotic expansion of boundary-layer type for flexural waves along the curved edge of a~Kirchhoff--Love plate JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 286 EP - 298 VL - 332 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a16/ LA - ru ID - ZNSL_2006_332_a16 ER -
%0 Journal Article %A K. D. Cherednichenko %T Asymptotic expansion of boundary-layer type for flexural waves along the curved edge of a~Kirchhoff--Love plate %J Zapiski Nauchnykh Seminarov POMI %D 2006 %P 286-298 %V 332 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a16/ %G ru %F ZNSL_2006_332_a16
K. D. Cherednichenko. Asymptotic expansion of boundary-layer type for flexural waves along the curved edge of a~Kirchhoff--Love plate. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 286-298. http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a16/