On the comparison of methods of computation of interference elastic wave fields in thin-layered media.~1
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 220-238
Voir la notice de l'article provenant de la source Math-Net.Ru
A nonstationary problem on propagation of low-frequency
waves for a model that consists of a packet of elastic
layers lying on the elastic half-space is considered, exact
mathematical solutions in the form of iterated integrals
are constructed in three basic forms. It is proved that
these solutions satisfy initial conditions. The possibility
of the passage to the representation of the solution by a superposition of multiple waves is considered.
@article{ZNSL_2006_332_a13,
author = {G. I. Petrashen and V. V. Reshetnikov and Yu. A. Surkov},
title = {On the comparison of methods of computation of interference elastic wave fields in thin-layered media.~1},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {220--238},
publisher = {mathdoc},
volume = {332},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a13/}
}
TY - JOUR AU - G. I. Petrashen AU - V. V. Reshetnikov AU - Yu. A. Surkov TI - On the comparison of methods of computation of interference elastic wave fields in thin-layered media.~1 JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 220 EP - 238 VL - 332 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a13/ LA - ru ID - ZNSL_2006_332_a13 ER -
%0 Journal Article %A G. I. Petrashen %A V. V. Reshetnikov %A Yu. A. Surkov %T On the comparison of methods of computation of interference elastic wave fields in thin-layered media.~1 %J Zapiski Nauchnykh Seminarov POMI %D 2006 %P 220-238 %V 332 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a13/ %G ru %F ZNSL_2006_332_a13
G. I. Petrashen; V. V. Reshetnikov; Yu. A. Surkov. On the comparison of methods of computation of interference elastic wave fields in thin-layered media.~1. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 35, Tome 332 (2006), pp. 220-238. http://geodesic.mathdoc.fr/item/ZNSL_2006_332_a13/